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Abstract

We develop divergence-conforming B-spline discretizations for the numerical solution
of the Darcy-Stokes-Brinkman equations. These discretizations are motivated by the
recent theory of isogeometric discrete differential forms and may be interpreted as
smooth generalizations of Raviart-Thomas elements. The new discretizations are (at
least) patch-wise C0 and can be directly utilized in the Galerkin solution of Darcy-
Stokes-Brinkman flow for single-patch configurations. When applied to incompress-
ible flows, these discretizations produce pointwise divergence-free velocity fields and
hence exactly satisfy mass conservation. In the presence of no-slip boundary condi-
tions and multi-patch geometries, the discontinuous Galerkin framework is invoked
to enforce tangential continuity without upsetting the conservation or stability prop-
erties of the method across patch boundaries. Furthermore, as no-slip boundary
conditions are enforced weakly, the method automatically defaults to a compatible
discretization of Darcy flow in the limit of vanishing viscosity. The proposed dis-
cretizations are extended to general mapped geometries using divergence-preserving
transformations. For sufficiently regular single-patch solutions, we prove a priori er-
ror estimates which are optimal for the discrete velocity field and suboptimal, by
one order, for the discrete pressure field. Our estimates are additionally robust with
respect to the parameters of the Darcy-Stokes-Brinkman problem. We present a com-
prehensive suite of numerical experiments which indicate optimal convergence rates
for both the discrete velocity and pressure fields for general configurations, suggesting
that our a priori estimates may be conservative. The focus of the current paper is
strictly on incompressible flows, but our theoretical results naturally extend to flows
characterized by mass sources and sinks.

Keywords: Darcy-Stokes-Brinkman equations, Generalized Stokes equations, B-splines,
Isogeometric analysis, Divergence-conforming discretizations
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1 Introduction

The Stokes equations describe a wide variety of fluid flows where advective inertial
forces are so small when compared with viscous forces that they can be neglected
altogether. Such flows arise in a large number of applications in nature and technol-
ogy, from the flow of lava in the Earth’s mantle [54] to microfluidic flow in micro-
electromechanical devices [41]. The Darcy-Stokes-Brinkman equations are a simple
extension of the Stokes equations which account for Darcy drag forces in highly porous
media [13]. These equations, also referred to as the generalized Stokes equations, have
been used to model groundwater flow [22], heat and mass transfer in pipes [39], and
flow in biological tissues [40]. One also obtains a generalized Stokes problem when
nonlinear terms are treated explicitly during semi-implicit time-integration of the
unsteady Navier-Stokes equations.

Despite their simple appearance, the Stokes and generalized Stokes equations have
presented considerable difficulty in their numerical approximation. At the heart of
the matter is the celebrated Babuška-Brezzi inf-sup condition [3, 12]. Simply put, the
condition states that one must properly select discrete velocity and pressure spaces
in order to arrive at a stable and convergent discrete mixed formulation. Since the
inception of the Marker-and-Cell scheme in 1965 [34], a large number of finite dif-
ference, finite volume, and finite element methods have been devised to address the
discrete inf-sup condition in the context of the Stokes equations. For reference, see
the review by Boffi, Brezzi, and Fortin [9]. Most methods for Stokes flow only satisfy
the incompressibility constraint in an approximate sense. Some bypass the inf-sup
condition entirely through the use of a stabilized Petrov-Galerkin method [27]. How-
ever, methods which return discretely divergence-free velocity fields are generally not
robust in the limit of vanishing viscosity when applied to generalized Stokes flows
[45]. Moreover, mass conservation is considered to be of prime importance for cou-
pled flow-transport [46], and it has been demonstrated that methods which fail to
exactly satisfy the incompressibility constraint suffer from spurious velocity oscilla-
tions when applied to “high pressure, low flow” problems [28, 44]. These issues have
motivated the development of discretization procedures which satisfy the incompress-
ibility constraint exactly.

One of the simplest methods returning a divergence-free velocity field is the
Pk − P k−1 triangular element which approximates velocity fields using continuous
piecewise polynomials of degree k and pressure fields using discontinuous polynomi-
als of degree k − 1. This method satisfies the Babuška-Brezzi condition for meshes
containing no nearly-singular vertices provided k ≥ 4 [53] and for certain macro-
element configurations [2, 63]. Unfortunately, the method is not stable for general
meshes and polynomial degrees. Recently, the use of H(div; Ω) elements has arisen
as a new paradigm for the the simulation of generalized Stokes flows [38, 42, 61]. As
these approximations are typically not members of H1(Ω), techniques such as the
interior penalty method [1, 24, 62] must be employed to enforce tangential continu-
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ity across elements. Alternatively, one can modify divergence-conforming elements
to ensure they have some limited tangential continuity [56], and some authors have
elected to release continuity entirely in favor of hybridization [18, 17]. In the same
vein, divergence-free wavelets have been proposed for the solution of Stokes flows
[43, 58, 59, 55], though these discretizations have a complicated construction and are
entirely limited to periodic and cuboidal domains.

In this paper, we present new divergence-conforming B-spline discretizations for
the generalized Stokes problem. These discretizations are motivated by the theory of
isogeometric discrete differential forms [15, 16] and may be interpreted as smooth gen-
eralizations of Raviart-Thomas elements [49]. The new discretizations are (at least)
patch-wise C0 and hence can be directly used in the Galerkin solution of generalized
Stokes flow for single-patch configurations. We enforce no-slip boundary conditions
weakly by means of Nitsche’s method [48], allowing our method to default to a com-
patible discretization of Darcy flow in the limit of vanishing viscosity. Alternative
inf-sup stable treatments of no-slip boundary conditions have been investigated in
the context of Stokes flow in [14]. In the presence of multi-patch geometries, we in-
voke the discontinuous Galerkin framework in order to enforce tangential continuity
across patch interfaces while maintaining the stability and conservation properties
of the method. The proposed discretizations are extended to general mapped ge-
ometries using divergence- and integral-preserving transformations. For single-patch
solutions, we are able to prove robust a priori error estimates which are optimal
for the discrete velocity field and suboptimal, by one order, for the discrete pressure
field. This is reminiscent of error estimates for stabilized equal-order interpolations
of the Stokes equations [27, 37]. Our derived estimates are also robust with respect
to the parameters of generalized Stokes flow. We utilize the methods of exact and
manufactured solutions to validate our estimates, and we find that pressure actually
converges at optimal order. We further test the effectiveness of our method using a
collection of benchmark problems: two-dimensional creeping lid-driven cavity flow,
three-dimensional creeping lid-driven cavity flow, and Darcy-dominated generalized
Stokes flow subject to boundary layers.

An outline of this paper is as follows. In the following section, we present some
basic notation. In Section 3, we recall the generalized Stokes problem subject to ho-
mogeneous boundary conditions. In Section 4, we briefly review B-splines, the basic
building blocks of our new discretization technique, and in Section 5, we define the B-
spline spaces which we will utilize to discretize velocity and pressure fields. In Section
6, we present our discrete variational formulation for the generalized Stokes problem
and prove continuity, stability, and a priori error estimates for the single-patch set-
ting. In Section 7, we discuss how to extend our methodology to the multi-patch
setting. In Sections 8 and 9, we present numerical results, and in Section 10, we draw
conclusions. Throughout this paper, we make explicit all of our estimates’ dependen-
cies on the problem parameters as well as the penalty parameter of Nistche’s method.
This will require a lengthy and tedious analysis, but we believe that knowledge of

3



such dependencies is of great practical importance. Additionally, the focus of this
paper is strictly on incompressible flows. Our theoretical results naturally extend to
flows characterized by mass sources and sinks.

2 Notation

We begin this paper with some basic notation. For d a positive integer representing
dimension, let D ⊂ Rd denote an arbitrary bounded Lipschitz domain with boundary
∂D. As usual, let L2(D) denote the space of square integrable functions on D and

define L2(D) = (L2(D))
d
. We will also utilize the more general Lebesgue spaces

Lp(D) where 1 ≤ p ≤ ∞ and their vectorial counterpart Lp(D). Let Hk(D) denote
the space of functions in L2(D) whose kth-order derivatives belong to L2(D) and

define Hk(D) =
(
Hk(D)

)d
. We identify with Hk(D) the standard Sobolev norm

‖v‖Hk(D) =

∑
|α|<k

‖Dαv‖2
L2(D)

1/2

where α = (α1, α2, . . . , αd) is a multi-index of non-negative integers, |α| = α1 + α2 +
. . .+ αd, and

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαd

d

.

We denote the Sobolev semi-norms as | · |Hk(D), and we use the convention H0(D) =
L2(D). Throughout, Sobolev spaces of fractional order are defined using function
space interpolation (see, e.g., Chapter 1 of [57]). We define H1

0 (D) ⊂ H1(D) to be
the subspace of functions with homogeneous boundary conditions and define H1

0(D)
to be the vectorial counterpart of H1

0 (D). We define Hs(div;D) to be the Sobolev
space of all functions in Hs(Ω) whose divergence also belongs to Hs(D). This space
is equipped with the norm

‖v‖Hs(div;D) =
(
‖v‖2

Hs(D) + ‖divv‖2
Hs(D)

)1/2
.

When s = 0, we drop the index. We also define

H0(div;D) = {v ∈ H(div;D) : v · n = 0 on ∂D}

where n denotes the outward pointing unit normal. Finally, we denote L2
0(D) ⊂ L2(D)

as the space of square-integrable functions with zero average on D.

3 The Generalized Stokes Problem

In this section, we recall the generalized Stokes problem subject to homogeneous
Dirichlet boundary conditions. For d a positive integer, let Ω denote a Lipschitz
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bounded open set of Rd. Throughout this paper, d will be either 2 or 3. The problem
of interest is as follows.

(S)



Given σ : Ω→ R, ν : Ω→ R, and f : Ω→ Rd, find u : Ω̄→ Rd and p : Ω→ R
such that

σu−∇ · (2ν∇su) + gradp = f in Ω (1)

divu = 0 in Ω (2)

u = 0 on ∂Ω. (3)

Above, u denotes the flow velocity of a fluid moving through the domain Ω, p denotes
the pressure acting on the fluid divided by the fluid density, ν denotes the kinematic
viscosity of the fluid, σ denotes the reaction coefficient which gives the ratio of the
viscosity to the permeability of the fluid, and f denotes a body force acting on the
fluid divided by the density. We assume that the viscosity is taken to be uniformly
positive (i.e., ∃ν0 > 0 such that ν ≥ ν0) and that the reaction coefficient is taken to
be non-negative (i.e., σ ≥ 0). Note that the pressure is only determined up to an
arbitrary constant.

Let us now make an assumption regarding the data of our problem. Notably, let
us assume that σ, ν ∈ L∞(Ω) and f ∈ L2(Ω) . The weak form for the generalized
Stokes problem is then written as follows:

(W )



Find u ∈ H1
0(Ω) and p ∈ L2

0(Ω) such that

a(u,v)− b(p,v) + b(q,u) = (f,v)L2(Ω) (4)

for all v ∈ H1
0(Ω) and q ∈ L2

0(Ω) where

a(w,v) = (2ν∇sw,∇sv)(L2(Ω))d×d + (σw,v)L2(Ω) , ∀w,v ∈ H1
0(Ω) , (5)

b(q,v) = (q, divv)L2(Ω) , ∀q ∈ L
2
0(Ω),v ∈ H1

0(Ω) . (6)

We have the following theorem which is a simple consequence of coercivity, continuity,
and a continuous inf-sup condition.

Theorem 3.1. Problem (W ) has a unique weak solution (u, p) ∈ H1
0(Ω) × L2

0(Ω).

4 B-splines and Geometrical Mappings

In this section, we briefly introduce B-splines, the primary ingredient in our dis-
cretization technique for the generalized Stokes equations. We also introduce map-
pings which will allow us to extend our discretization technique to general geometries
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of engineering interest. For an overview of B-splines, their properties, and robust al-
gorithms for evaluating their values and derivatives, see de Boor [23] and Schumaker
[52]. For the application of B-splines to finite element analysis, see Höllig [35] and
Cottrell, Hughes, and Bazilevs [20].

4.1 Univariate B-splines

For two positive integers k and n, representing degree and dimensionality respectively,
let us introduce the ordered knot vector

Ξ := {0 = ξ1, ξ2, . . . , ξn+k+1 = 1} (7)

where
ξ1 ≤ ξ2 ≤ . . . ξn+k+1.

Given Ξ and k, univariate B-spline basis functions are constructed recursively starting
with piecewise constants (k = 0):

B0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(8)

For k = 1, 2, 3, . . ., they are defined by

Bk
i (ξ) =

ξ − ξi
ξi+k − ξi

Bk−1
i (ξ) +

ξi+k+1 − ξ
ξi+k+1 − ξi+1

Bk−1
i+1 (ξ). (9)

When ξi+k − ξi = 0, ξ−ξi
ξi+k−ξi

is taken to be zero, and similarly, when ξi+k+1− ξi+1 = 0,
ξi+k+1−ξ

ξi+k+1−ξi+1
is taken to be zero. B-spline basis functions are piecewise polynomials of

degree k, form a partition of unity, have local support, and are non-negative. An
example of a cubic B-spline basis is shown in Fig. 1. Note the basis is C2 everywhere
in the interval (0, 1). Enhanced smoothness is one of the defining features of B-
splines. We refer to linear combinations of B-spline basis functions as B-splines or
simply splines.

Let us now introduce the vector ζ = {ζ1, . . . , ζm} of knots without repetitions and
a corresponding vector {r1, . . . , rm} of knot multiplicities. That is, ri is defined to be
the multiplicity of the knot ζi in Ξ. By construction,

∑m
i=1 ri = n+k+ 1. We assume

that ri ≤ k+1. Let us further assume throughout that r1 = rm = k+1, i.e, that Ξ is an
open knot vector. This allows us to easily prescribe Dirichlet boundary conditions.
At the point ζi, B-spline basis functions have αj := k − rj continuous derivatives.
Therefore, −1 ≤ αj ≤ p− 1, and the maximum multiplicity allowed, rj = k+ 1, gives
a discontinuity at ζj. We define the regularity vector α by α := {α1, . . . , αm}. By
construction, α1 = αm = −1. In what follows, we utilize the notation

|α| = min{αi : 2 ≤ i ≤ m− 1} (10)
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0 11/3 2/30

1

Figure 1: Cubic B-spline basis functions for open, non-uniform knot vector Ξ =
{0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1}. Note the basis is C2 everywhere in the interval (0, 1).

and α− 1 := {−1, α2 − 1, . . . , αm−1 − 1,−1} when αi ≥ 0 for 2 ≤ i ≤ m− 1.
We denote the space of B-splines spanned by the basis functions Bk

i as

Skα := span
{
Bk
i

}n
i=1

. (11)

When k ≥ 1 and αi ≥ 0 for 2 ≤ i ≤ m − 1, the derivatives of functions in Skα are
splines as well. In fact, we have the stronger relationship{

d

dx
v : v ∈ Skα

}
≡ Sk−1

α−1 . (12)

That is, the derivative operator ∂x : Skα → Sk−1
α−1 is surjective. One of the most

important properties of univariate B-splines is refinement and, perhaps more impor-
tantly, nestedness of refinement. Notably, knot insertion and degree elevation allow
one to define a sequence of nested, refined B-spline spaces. Knot insertion and degree
elevation algorithms are described in detail in Chapter 2 of [20].

4.2 Multivariate B-splines

The definition of multivariate B-splines follows easily through a tensor-product con-
struction. For d again a positive integer, let us consider the unit cube Ω̂ = (0, 1)d ⊂
Rd, which we will henceforth refer to as the parametric domain. Mimicking the one-
dimensional case, given integers kl and nl for l = 1, . . . , d, let us introduce open
knot vectors Ξl = {ξ1,l, . . . , ξnl+kl+1,l} and the associated vectors ζl = {ζ1,l, . . . , ζml,l},
{r1,l, . . . , rml,l}, and αl = {α1,l, . . . , αml,l}. There is a parametric Cartesian meshMh
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associated with these knot vectors partitioning the parametric domain into rectangu-
lar parallelepipeds. Visually,

Mh = {Q = ⊗l=1,...,d (ζil,l, ζil+1,l) , 1 ≤ il ≤ ml − 1} . (13)

For each element Q ∈ Mh we associate a parametric mesh size hQ = diam(Q). We
also define a shape regularity constant λ which satisfies the inequality

λ−1 ≤ hQ,min

hQ
≤ λ, ∀Q ∈Mh, (14)

where hQ,min denotes the length of the smallest edge of Q. A sequence of parametric
meshes that satisfy the above inequality for an identical shape regularity constant is
said to be locally quasi-uniform.

We associate with each knot vector Ξl (l = 1, . . . , d) univariate B-spline basis
functions Bkl

il,l
of degree kl for il = 1, . . . , nl. On the mesh Mh, we define the tensor-

product B-spline basis functions as

Bk1,...,kd
i1,...,id

:= Bk1
i1,1
⊗ . . .⊗Bkd

id,d
, i1 = 1, . . . , n1, . . . id = 1, . . . , nd. (15)

We then accordingly define the tensor-product B-spline space as

Sk1,...,kdα1,...,αd
≡ Sk1,...,kdα1,...,αd

(Mh) := span
{
Bk1,...,kd
i1,...,id

}n1,...,nd

i1=1,...,id=1
. (16)

The space is fully characterized by the mesh Mh, the degrees kl, and the regularity
vectors αl, as the notation reflects. Like their univariate counterparts, multivariate
B-spline basis functions are piecewise polynomial, form a partition of unity, have local
support, and are non-negative. Defining the regularity constant

α := min
l=1,...,d

min
2≤il≤ml−1

{αil,l} (17)

we see that our B-splines are Cα-continuous throughout the domain Ω̂. Refinement of
multivariate B-spline bases is obtained by applying knot insertion and degree elevation
in tensor-product fashion. In the remainder of the text, we consider a family of
nested meshes {Mh}h≤h0 and associated B-spline spaces

{
Sk1,...,kdα1,...,αd

(Mh)
}
h≤h0

that

have been obtained by successive applications of knot refinement. Furthermore, we
assume throughout that the mesh family {Mh}h≤h0 is locally quasi-uniform.

Note that each element Q = ⊗l=1,...,d (ζil,l, ζil+1,l) has the equivalent representation
Q = ⊗l=1,...,d (ξjl,l, ξjl+1,l) for some index jl. With this in mind, we associate with each
element a support extension Q̃, defined as

Q̃ := ⊗l=1,...,d (ξjl−pl,l, ξjl+pl+1,l) . (18)

The support extension is the interior of the set formed by the union of the supports
of all B-spline basis functions whose support intersects Q. Note that each element
belongs to the support extension of at most Πl=1,...,d(2pl + 1) elements. The support
extension is a natural object to consider when examining the local approximation
properties of a B-spline space.
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4.3 Piecewise Smooth Functions, Geometrical Mappings, and
Physical Mesh Entities

On the parametric meshMh, we define the space of piecewise smooth functions with
interelement regularity given by the vectors α1, . . . ,αd as

C∞α1,...,αd
= C∞α1,...,αd

(Mh) . (19)

Precisely, a function in C∞α1,...,αd
is a function whose restriction to an element Q ∈Mh

admits a C∞ extension in the closure of that element and which has αil,l contin-
uous derivatives with respect to the lth coordinate along the internal mesh faces
{(x1, . . . , xd) : xl = ζil,l, ζjl′ ,l′ < xl′ < ζjl′+1,l

′ , l′ 6= l} for all il = 2, . . . ,ml − 1 and
jl′ = 1, . . . ,ml′ − 1. Note immediately that any function lying in the B-spline space
Sk1,...,kdα1,...,αd

also lies in C∞α1,...,αd
.

Unless specified otherwise, we assume throughout the rest of the paper that the
physical domain Ω ⊂ Rd can be exactly parametrized by a geometrical mapping

F : Ω̂ → Ω belonging to
(
C∞α1,...,αd

)d
with piecewise smooth inverse. We further

assume that the physical domain Ω is simply connected with connected boundary
∂Ω and the geometrical mapping is independent of the mesh family index h. See, for
example, the sequence of mapped meshes depicted in Figure 2. A geometrical mapping
meeting our criteria could be defined utilizing B-splines or Non-Uniform Rational B-
Splines (NURBS) on the coarsest mesh Mh0 . For examples of such mappings, see
Chapter 2 of [20]. NURBS mappings are especially useful as they can represent many
geometries of scientific and engineering interest and are the main tools employed
in Computer Aided Design (CAD) software. Later in this paper, we will utilize
polar mappings to solve flow problems on cylindrical geometries in order to preserve
symmetries.

The geometrical mapping F naturally induces a mesh

Kh = {K : K = F(Q), Q ∈Mh} (20)

on the physical domain Ω. We define for each element K ∈ Kh a physical mesh size

hK = ‖DF‖L∞(Q)hQ (21)

where Q is the pre-image of K, and we also define the support extension K̃ = F(Q̃).
We define for a given mesh the global mesh size

h = max {hK , K ∈ Kh} .

Note that as the parametric mesh family {Mh}h≤h0 is locally quasi-uniform and the
geometrical mapping F is independent of the mesh family index h, the physical mesh
family {Kh}h≤h0 is also locally quasi-uniform. We refer to the physical domain Ω and

its pre-image Ω̂ interchangeably as the patch. It should be noted that, in general, the
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F

Ni
h1wi

h1

W i 1,…,n1

Ni
h1wi

h1

W
F 1

i 1,…,n1

Coarse Mesh

F

Ni
h2wi

h2

W i 1,…,n2

Ni
h2wi

h2

W
F 1

i 1,…,n2

First Refinement

F

Ni
h3wi

h3

W i 1,…,n3

Ni
h3wi

h3

W
oF 1

i 1,…,n3

Second Refinement

Figure 2: Illustration in the two-dimensional setting of how the parametric mapping
F is independent of the mesh family index h.
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domain Ω cannot be represented using just a single patch. Instead, multiple patches
must be employed. We will discuss further the multi-patch setting in Section 7.

We define on the parametric mesh a set of mesh faces F̂h = {F̂} where F̂ is a face
of one or more elements in Mh. We define the physical set of mesh faces as

Fh = {F = F(F̂ ) : F̂ ∈ F̂h}

and we define the boundary mesh to be

Γh = {F ∈ Fh : F ⊂ ∂Ω} .

By construction,
∂Ω = ∪F∈Γh

F .

Note that for each face F ∈ Γh there is a unique K ∈ Kh such that F is a “face” of
K (in the sense that F is the image of a face of Q, the pre-image of K). We hence
define for such a face the mesh size

hF := hK .

One may also define hF to be the wall-normal mesh-size as is done in [7]. Such a
definition is more appropriate when stretched meshes are utilized in the presence of
layers.

Throughout the paper, we will utilize the terminology “a constant independent
of h”. When we employ such terminology, we simply indicate that the constant
will not depend on the given mesh and, in particular, its size. The constant may,
however, depend on the domain, the shape regularity of the parametric mesh family,
the polynomial degrees of the employed B-spline spaces, and global, mesh-invariant
measures of the parametric mapping.

5 Discretization of Velocity and Pressure Fields

In this section, we define the B-spline spaces which we will utilize to discretize the
velocity and pressure fields appearing in the generalized Stokes problem. These spaces
are motivated by the recent theory of isogeometric discrete differential forms [15, 16]
and may be interpreted as smooth generalizations of Raviart-Thomas elements [49].
We first define our discrete velocity and pressure spaces on the parametric domain
Ω̂ = (0, 1)d and then define discrete spaces on the physical domain Ω using divergence-
and integral-preserving transformations. We finish this section with a presentation
of local approximation estimates and trace inequalities for our discrete velocity and
pressure spaces.
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5.1 Discrete Spaces on the Parametric Domain

Using the notation of the previous section and assuming that

α := min{|αl| : l = 1, . . . , d} ≥ 1,

we define the following two spaces:

V̂h :=

{
Sk1,k2−1
α1,α2−1 × S

k1−1,k2
α1−1,α2

if d = 2,

Sk1,k2−1,k3−1
α1,α2−1,α3−1 × S

k1−1,k2,k3−1
α1−1,α2,α3−1 × S

k1−1,k2−1,k3
α1−1,α2−1,α3

if d = 3,

Q̂h :=

{
Sk1−1,k2−1
α1−1,α2−1 if d = 2,

Sk1−1,k2−1,k3−1
α1−1,α2−1,α3−1 if d = 3.

The space V̂h comprises our set of discrete velocity fields while Q̂h comprises our
set of discrete pressure fields. Note that as α ≥ 1, our discrete velocity fields are
H1-conforming. If we allow α = 0, our spaces collapse to standard Raviart-Thomas
mixed finite elements [49]. In order to deal with no-penetration boundary conditions,
we make use of the following constrained discrete spaces:

V̂0,h :=
{

v̂h ∈ V̂h : v̂h · n̂ = 0 on ∂Ω̂
}
,

Q̂0,h :=

{
q̂h ∈ Qh :

∫
Ω̂

q̂hdx̂ = 0

}
.

Above, n̂ denotes the outward-facing normal to ∂Ω̂. As specified in the introduction,
we choose to enforce no-slip boundary condition weakly using Nitsche’s method [48].

Due to the special relationship given by (12), the spaces V̂0,h and Q̂0,h along with the
parametric divergence operator form the bounded discrete cochain complex

V̂0,h
d̂iv−−−→ Q̂0,h

where d̂iv is the divergence operator on the unit cube Ω̂. In fact, we have a much
stronger result due to the results of [15].

Proposition 5.1. There exist L2-stable projection operators Π̂0
V̂h

: H0(d̂iv; Ω̂) → V̂0,h

and Π̂0
Q̂h

: L2
0(Ω̂)→ Q̂0,h such that the following diagram commutes:

H0(d̂iv; Ω̂)
d̂iv−−−→ L2

0(Ω̂)

Π̂0
V̂h

y Π̂0
Q̂h

y
V̂0,h

d̂iv−−−→ Q̂0,h.

(22)

Furthermore, there exists a positive constant Ĉu independent of h such that

‖Π̂0
V̂h

v̂‖H1(Ω̂) ≤ Ĉu‖v̂‖H1(Ω̂), ∀v̂ ∈ H0(d̂iv; Ω̂) ∩ H1(Ω̂) . (23)
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5.2 Discrete Spaces on the Physical Domain

To define our discrete velocity and pressure spaces on the physical domain, we intro-
duce the following pullback operators:

ιu(v) := det (DF) (DF)−1 (v ◦ F) , v ∈ H0(div; Ω) (24)

ιp(q) := det (DF) (q ◦ F) , q ∈ L2
0(Ω) (25)

where DF is the Jacobian matrix of the parametric mapping F. The push-forward
given by (24), popularly known as the Piola transform, has two important properties:
(i) it preserves the nullity of normal components, (ii) it maps divergences to diver-
gences. Hence, it maps divergence-free fields in parametric space to divergence-free
fields in physical space, as illustrated in Fig. 3. On the other hand, the push-forward
given by (25) has the property that it preserves the nullity of the integral operator.
Due to these properties, we have the following commuting diagram:

H0(d̂iv; Ω̂)
d̂iv−−−→ L2

0(Ω̂)

ιu

x ιp

x
H0(div; Ω)

div−−−→ L2
0(Ω).

(26)

This motivates the use of the following discrete velocity and pressure spaces in the
physical domain:

V0,h :=
{

v ∈ H0(div; Ω) : ιu(v) ∈ V̂0,h

}
,

Q0,h :=
{
q ∈ L2

0(Ω) : ιp(q) ∈ Q̂0,h

}
.

Furthermore, we define the projectors Π0
Vh : H0(div; Ω) → V0,h and Π0

Qh
: L2(Ω) →

Q0,h via the compositions

Π0
Qh

:= ι−1
u ◦ Π̂0

Q̂h
◦ ιu, Π0

Qh
:= ι−1

p ◦ Π̂0
Q̂h
◦ ιp.

Employing the preceding results and terminology as well as the smoothness properties
of the parametric mapping F , we arrive at the following proposition.

Proposition 5.2. The following diagram commutes:

H0(div; Ω)
div−−−→ L2

0(Ω)

Π0
Vh

y Π̂0
Q̂h

y
V0,h

div−−−→ Q0,h.

(27)

Furthermore, there exists a positive constant Cu independent of h such that

‖Π0
Vh v‖H1(Ω) ≤ Cu‖v‖H1(Ω), ∀v ∈ H0(div; Ω) ∩ H1(Ω) . (28)
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Compatible B-splines

Two-dimensional Compatible B-splines:

NURBS Mapped Domains

On NURBS mapped domains, the Piola transform is utilized

to map flow velocities.  Pressures are mapped using an

integral preserving transform.

Figure 3: The Piola transform maps divergence-free fields in parametric space to
divergence-free fields in physical space, as shown here for the case of a divergence-free
B-spline.

We immediately have an inf-sup condition for our discrete velocity/pressure pair.

Proposition 5.3. There exists a positive constant β̊ independent of h such that the
following holds: for every qh ∈ Q0,h, there exists a vh ∈ V0,h such that:

divvh = qh (29)

and
‖vh‖H1(Ω) ≤ β̊−1‖qh‖L2(Ω). (30)

Hence,

inf
qh∈Q0,h

qh 6=0

sup
vh∈V0,h

(divvh, qh)L2(Ω)

‖vh‖H1(Ω)‖qh‖L2(Ω)

≥ β̊. (31)

Proof. Let qh ∈ Q0,h be arbitrary. It is a classical result (see pg. 24 of [29], for
example) that there exists a function v ∈ H1

0(Ω) such that divv = qh and

‖v‖H1(Ω) ≤ β−1‖qh‖L2(Ω)

where β is a positive constant independent of v. Let vh = Π0
Vh v. Then, by Proposi-

tion 5.2, divvh = div Π0
Vh v = Π0

Qh
divv = qh and

‖vh‖H1(Ω) ≤ Cu‖v‖H1(Ω) ≤ Cuβ
−1‖qh‖L2(Ω).

Thus the theorem holds with β̊ = β
Cu

.
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We would like to state that such an inf-sup condition would not have held if we
had elected to strongly enforce homogeneous tangential boundary conditions within
the space V0,h. This is because

div
{
V0,h ∩ H1

0(Ω)
}
( Q0,h.

Hence, there exists a qh ∈ Q0,h such that qh 6= 0 and

sup
vh∈V0,h∩H1

0(Ω)

(divvh, qh)L2(Ω)

‖vh‖H1(Ω)‖qh‖L2(Ω)

= 0.

Hence, an alternative methodology must be employed if one wishes to strongly enforce
homogeneous tangential boundary conditions within the space V0,h. For example, in
[14], a special discrete pressure space was constructed in the two-dimensional setting
by selectively reducing the dimensionality ofQ0,h using T-splines [5]. However, a proof
of mesh-independent discrete stability remains absent with this choice of pressure
space, and the convenient tensor-product structure of B-splines is lost.

We also have the following result.

Proposition 5.4. If vh ∈ V0,h satisfies

(divvh, qh)L2(Ω) = 0, ∀qh ∈ Q0,h, (32)

then divvh ≡ 0.

Proof. The proof holds trivially as div maps V0,h onto Q0,h.

Hence, by choosing V0,h and Q0,h as discrete velocity and pressure spaces, we
arrive at a discretization that automatically returns velocity fields that are pointwise
divergence-free.

5.3 Visualization of Basis Functions

We now visualize some of the basis functions associated with our chosen discrete
velocity and pressure spaces. For ease of presentation, we confine ourselves to the
two-dimensional setting. We also work with the unconstrained analogues of V0,h and
Q0,h, which we denote as Vh and Qh. Let k1 = k2 = 2, and let Ξ1 and Ξ2 be equal to

Ξ1 := Ξ2 := {0, 0, 0, 1/3, 2/3, 1, 1, 1} .

These polynomial degrees and knot vectors define a parametric meshMh and B-spline
spaces V̂h and Q̂h overMh. To define the physical domain, we employ a biquadratic B-
spline mapping. The control net defining this mapping (see Chapter 2 of [20]) and the
resulting physical mesh Kh are illustrated in Figure 4. In Figure 5, we have depicted
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a “first-component” vector basis function of the discrete velocity space Vh. Note
that the basis function is C1-continuous along horizontal parametric lines and C0-
continuous along vertical parametric lines. Further note that the directionality of the
basis function is preserved under the map ιu in the sense that the function is oriented
in the direction of horizontal parametric lines in both parametric and physical space.
In Figure 6, we have depicted a typical “second-component” vector basis function of
Vh. Note that the basis function is C0-continuous along horizontal parametric lines
and C1-continuous along vertical parametric lines, and the directionality of the basis
function is preserved under the map ιu in the sense that the function is oriented in the
direction of vertical parametric lines in both parametric and physical space. Finally,
in Figure 7, we have depicted a representative basis function of the discrete pressure
space Qh which is C0-continuous in both parametric and physical space.

5.4 Approximation Results and Trace Inequalities

Let us define
k′ = min

l=1,...,d
|pl − 1| . (33)

Note that the discrete velocity and pressure spaces V0,h and Q0,h consist of mapped
piecewise polynomials which are complete up to degree k′. Hence, k′ may be thought
of as the polynomial degree of our discretization technique. The following result
details the local approximation properties of our discrete spaces. Its proof may be
found in [15].

Proposition 5.5. Let K ∈ Kh and K̃ denote the support extension of K. For
0 ≤ j ≤ s ≤ k′ + 1, we have

|v− Π0
Vh v|Hj(K) ≤ Chs−jK ‖v‖Hs(K̃), ∀v ∈ Hs(K̃) ∩ H0(div; Ω) (34)

|q − Π0
Qh
q|Hj(K) ≤ Chs−jK ‖q‖Hs(K̃), ∀q ∈ Hs(K̃) ∩ L2

0(Ω) (35)

where C denotes a positive constant, possibly different at each appearance, independent
of h.

Hence, our discrete spaces deliver optimal rates of convergence from an approx-
imation point of view. This being said, the results of Proposition 5.5 are riddled
with inconvenient interpolation constants C which depend on, among other things,
the polynomial degree and continuity of our approximation spaces. To attack the
question of degree and continuity directly, Beirão da Veiga et al. derived interpola-
tion estimates for B-splines with explicit dependence on degree and continuity in [21].
However, the derived estimates are only available for interpolations of Hermite-type.
All of this seems to indicate that function analytic estimates have their limitations.
Alternatively, one can use numerics to study the approximation properties of discrete
spaces using the theory of Kolmogorov n-widths. This approach allows one to exactly
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Student Version of MATLAB

Control Mesh

Student Version of MATLAB

Physical Mesh

Figure 4: The control net and physical mesh for the biquadratic B-spline surface with
Ξ1 := Ξ2 := {0, 0, 0, 1/3, 2/3, 1, 1, 1}.
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Student Version of MATLAB

Parametric Space

Student Version of MATLAB

Physical Space

Figure 5: Vector plots of a representative first-component vector basis function of the
discrete velocity space Vh in both parametric and physical space.
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Student Version of MATLAB

Parametric Space

Student Version of MATLAB

Physical Space

Figure 6: Vector plots of a representative second-component vector basis function of
the discrete velocity space Vh in both parametric and physical space.
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Student Version of MATLAB

Parametric Space

Student Version of MATLAB

Physical Space

Figure 7: Contour plots of a representative basis function of the discrete pressure
space Qh in both parametric and physical space.
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compute the interpolation constants associated with variational projection through
the solution of a generalized eigenproblem. The theory of Kolmogorov n-widths was
used to study one-dimensional B-spline discretizations in [25]. This paper revealed
that maximal continuity B-spline spaces harbor nearly optimal resolution properties
and admit smaller intepolation constants than lower continuity spaces. Recently,
the theory of Kolmogorov n-widths has been used to study multi-dimensional and
compatible B-spline discretizations. This study has also revealed the advantage of
employing B-splines of maximal continuity in the multi-dimensional setting. The
results of this study will be presented in a forthcoming publication.

We will also need the following trace estimate in our proceeding mathematical
analysis. Its proof can be found in [26].

Proposition 5.6. Let K ∈ Kh and Q = F−1(K). Then we have

‖ (∇svh) n‖(L2(∂K))d ≤ Ctraceh
−1
K ‖vh‖H1(K), ∀vh ∈ V0,h (36)

where Ctrace denotes a positive constant independent of h.

In [26], it was shown that Proposition 5.6 holds with Ctrace ∼ (k′)2. However, our
numerical experience has indicated that a corresponding global trace inequality holds
with Ctrace ∼ k′ if B-splines of maximal continuity are utilized. This allows us to
select a smaller penalty parameter when employing Nitsche’s method. As we will see
in the next section, our convergence estimates scale inversely with the square root of
Nitsche’s penalty parameter. Hence, we want to select Nitsche’s penalty parameter
as small as possible.

6 Approximation of the Generalized Stokes Prob-

lem

In this section, we approximate the homogeneous generalized Stokes problem using
the discrete velocity and pressure spaces introduced in the previous section. We prove
continuity, stability, and a priori error estimates for our discretization scheme in the
single patch setting, and we explicitly track all of our estimates’ dependencies on the
problem parameters and Nitsche’s penalty parameter.

6.1 Variational Formulation

We begin this section by presenting a discrete variational formulation for the gener-
alized Stokes problem. Since members of V0,h do not satisfy homogeneous tangential
Dirichlet boundary conditions, we resort to Nitsche’s method [48] to weakly enforce
no-slip boundary conditions. This requires slightly more regularity on our problem
data. Specifically, we assume

ν ∈ W 1,∞(Ω) := {w ∈ L∞(Ω) : ∇w ∈ L∞(Ω)} .
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This assumption ensures the trace of ν on the boundary ∂Ω is well-defined. Now, let
us define the following bilinear form:

ah(w,v) = a(w,v)−
∑
F∈Γh

∫
F

2ν

(
((∇sv) n) ·w + ((∇sw) n) · v− Cpen

hF
w · v

)
ds.

(37)
In the above equation, Cpen ≥ 1 denotes a specially chosen positive penalty constant
which will be specified in the sequel. Our discrete formulation is written as follows.

(G)


Find uh ∈ V0,h and ph ∈ Q0,h such that

ah(uh,vh)− b(ph,vh) + b(qh,uh) = (f,vh)L2(Ω) ,

∀vh ∈ V0,h, qh ∈ Q0,h. (38)

Note that the mesh-dependent bilinear form given by (37) has three additional terms
in comparison with the continuous bilinear form: a penalty term, a consistency term,
and a stability term. All three of these terms will prove important in our proceeding
mathematical analysis.

We have the following lemma detailing the consistency of our numerical method
provided the exact solution satisfies a reasonable regularity condition.

Lemma 6.1. Suppose that the unique weak solution (u, p) of (W ) satisfies the regu-
larity condition u ∈ H3/2+ε(Ω) for some ε > 0. Then:

ah(u,vh)− b(p,vh) + b(qh,u) = (f ,vh)L2(Ω) (39)

for all vh ∈ V0,h and qh ∈ Q0,h.

Proof. We trivially have
b(qh,u) = 0, ∀qh ∈ Q0,h.

Now let vh ∈ V0,h. By the trace theorem for fractional Sobolev spaces [57], the
assumption u ∈ H3/2+ε(Ω) guarantees that (∇su) n is well-defined along ∂Ω and
(∇su) n ∈ (L2(∂Ω))d. Furthermore, (∇svh) n is well-defined along ∂Ω and (∇svh) n ∈
(L2(∂Ω))d. Hence, the quantity ah(u,vh) is well-defined. Utilizing integration by
parts and the fact that u satisfies homogeneous Dirichlet boundary conditions and
vh satisfies homogeneous normal Dirichlet boundary conditions, we have

ah(u,vh)− b(p,vh) =

∫
Ω

(σu−∇ · (2ν∇su) + gradp) · vhdx

=

∫
Ω

f · vhdx

= (f,vh)L2(Ω)

where integration is to be understood in the sense of distributions. This completes
the proof of the lemma.
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Consistency is the primary reason that we employed Nitsche’s method instead of a
näıve penalty method. Nitsche’s method also admits adjoint consistency, and this will
allow us to prove optimal L2 estimates for our numerical method. This is in contrast
with some standard discontinuous Galerkin techniques such as the Nonsymmetric
Interior Penalty Galerkin (NIPG) method [50]. Furthermore, note that our method
is consistent for velocity fields satisfying u ∈ H3/2+ε(Ω) for arbitrary ε > 0. Thus,
our method is consistent for such singular problems as flow over a backward facing
step. As a direct result of consistency, we have the following orthogonality condition.

Corollary 6.1. Let (uh, ph) denote a solution of (G), and suppose that the unique
weak solution (u, p) of (W ) satisfies the regularity condition u ∈ H3/2+ε(Ω) for some
ε > 0. Then:

ah(u− uh,vh)− b(p− ph,vh) + b(qh,u− uh) = 0 (40)

for all vh ∈ V0,h and qh ∈ Q0,h.

Our discretization also enjoys the following pointwise mass conservation property
which is a direct consequence of Proposition 5.4.

Corollary 6.2. Let (uh, ph) denote a solution of (G). Then:

divuh ≡ 0 (41)

We would like to note that in the event the viscosity ν vanishes for uniformly
positive σ, Problem (G) reduces a compatible discretization of incompressible Darcy
flow subject to a no-penetration boundary condition. This reduction is contingent
upon the weak specification of the no-slip condition. In this sense, weak boundary
conditions are essential to the proper behavior of the discrete system under vanishing
viscosity. Our proceeding stability and error analysis extends trivially to the case
of vanishing viscosity. Furthermore, much like the solutions of Navier-Stokes flows,
the generalized Stokes solution is characterized by the presence of a sharp boundary
layer for small ν. The weak no-slip condition alleviates the necessity of highly-refined
boundary layer meshes [6, 7, 8].

Remark 6.1. If we wish to impose non-homogeneous tangential Dirichlet (e.g., pre-
scribed slip) boundary conditions, we add the following expression to the right hand
side of our discrete formulation:

fBC(vh) =
∑
F∈Γh

∫
F

2ν

(
− ((∇svh) n) · uBC +

Cpen
hF

uBC · vh
)
ds (42)

where uBC is a vector function living on ∂Ω with prescribed tangential boundary value
and zero normal boundary value. The imposition of non-homogeneous normal Dirich-
let boundary conditions is executed strongly in the standard sense.
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6.2 Continuity and Stability

We now establish continuity and stability estimates for our discrete formulation. Con-
tinuity and stability, in conjunction with consistency and regularity, will guarantee
convergence. To obtain the estimates in this subsection, we will need to call upon
standard tools from the discontinuous Galerkin community such as trace estimates,
and we will also rely on the results presented in Proposition 5.2.

Before proceeding, let us assume throughout the remainder of the section that
the reaction rate σ and the kinematic viscosity ν are constant over Ω. This will
greatly simplify the presentation of our mathematical analysis. Nonetheless, our
results extend to the more general setting of variable reaction and viscosity. Let us
define the following weighted mesh-dependent norm:

‖v‖2
V(h) := σ‖v‖2

H(div;Ω) + 2ν|v|2H1(Ω)

+ 2ν
∑
F∈Γh

hF‖ (∇sv) n‖2
(L2(F ))d + 2ν

∑
F∈Γh

Cpen
hF
‖v‖2

(L2(F ))d .

(43)

Note that this is a proper norm over our discrete velocity space due to the Poincaré
inequality

‖v‖H1(Ω) ≤ Cpoin|v|H1(Ω), ∀v ∈ H1(Ω) ∩ H0(div; Ω) (44)

where Cpoin is a positive constant which depends only on Ω. In fact, by Proposition
5.6 and the Poincaré inequality, there exists a positive constant Cinv independent of
h, σ, ν, and Cpen such that

‖vh‖2
V(h) ≤ Cinv

(
σ‖vh‖2

H(div;Ω) + 2ν|v|2H1(Ω) + 2ν
∑
F∈Γh

Cpen
hF
‖vh‖2

(L2(F ))d

)
(45)

for all vh ∈ V0,h. The above inequality dictates that our proposed norm acts as
expected on the discrete subspace V0,h. That is, it is analogous to a weighted H1-norm
coupled with an appropriate penalty term to handle tangential boundary conditions.
The use of a mesh-dependent norm is fairly standard in the discontinuous Galerkin
community. It is also standard in the stabilized methods community. The use of a
weighted norm is motivated by our desire to extract error estimates with an explicit
dependence on the problem parameters σ and ν as well as the penalty constant Cpen.
Let us define the following weighted L2-norm for the pressure space

‖q‖2
Q :=

1

σ + 2ν
‖q‖2

L2(Ω), ∀q ∈ L2
0(Ω). (46)

Note that when ν = 0, our norms reduce to σ-weighted H(div)- and L2-norms. Hence,
we recover the proper norms for Darcy flow in the limit of vanishing viscosity.

We have the following continuity result.
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Lemma 6.2. The following continuity statements hold:

ah(w,v) ≤ Ccont‖w‖V(h)‖v‖V(h), ∀w,v ∈ V0,h ⊕
(

H1
0(Ω) ∩H3/2+ε(Ω)

)
(47)

b(p,v) ≤ ‖p‖Q‖v‖V(h), ∀p ∈ L2
0(Ω),v ∈ V0,h ⊕

(
H1

0(Ω) ∩H3/2+ε(Ω)
)
(48)

where ε > 0 is an arbitrary positive number and Ccont is a positive constant indepen-
dent of h, σ, ν, Cpen, and ε.

Proof. To establish the first estimate, we write

ah(w,v) = a(w,v)−
∑
F∈Γh

∫
F

2ν

(
((∇sv) n) ·w + ((∇sw) n) · v− Cpen

hF
w · v

)

for some w,v ∈ V0,h ⊕
(

H1
0(Ω) ∩H3/2+ε(Ω)

)
. We now bound ah(·, ·) term by term.

To begin, note immediately that

a(w,v) + 2ν
∑
F∈Γh

∫
F

Cpen
hF

w · v ≤ ‖w‖V(h)‖v‖V(h).

Next, we write∑
F∈Γh

∫
F

2ν ((∇sv) n) ·w ≤ 2ν
∑
F∈Γh

(
‖w‖(L2(F ))d‖ (∇sv) n‖(L2(F ))d

)
≤ 2ν

√∑
F∈Γh

hF‖ (∇sv) n‖2
(L2(F ))d

√∑
F∈Γh

h−1
F ‖w‖2

(L2(F ))d

≤ ‖w‖V(h)‖v‖V(h).

Similarly, we have ∑
F∈Γh

∫
F

2ν ((∇sw) n) · v ≤ ‖w‖V(h)‖v‖V(h).

Collecting our bounds, we have

ah(w,v) ≤ Ccont‖w‖V(h)‖v‖V(h)

with Ccont = 3. To establish the second continuity result of the lemma, we first write

b(p,v) ≤ ‖p‖L2(Ω)‖divv‖L2(Ω).
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The result is then a consequence of

‖p‖L2(Ω) = (σ + 2ν)1/2 ‖p‖Q

and
‖divv‖L2(Ω) ≤ (σ + 2ν)−1/2 ‖v‖V(h).

Now we seek a coercivity estimate for the bilinear form ah(·, ·). Note that we
cannot obtain a general estimate with respect to the V(h)-norm because the bilinear
form imposes no gradient control along ∂Ω. On the other hand, (45) suggests that a
coercivity estimate can be achieved if we restrict ourselves to the discrete space V0,h.
To develop estimates which are independent of the problem parameters σ and ν, we
further restrict ourselves to the divergence-free space

V̊0,h := {vh ∈ V0,h : divvh = 0} .

To proceed, we must make two assumptions regarding the size of Cpen. First, in light
of Proposition 5.6, we choose Cpen large enough such that

Cpen ≥ 4hKC
2
poinCKorn

‖ (∇svh) n‖2
(L2(∂K))d

‖vh‖2
H1(K)

, ∀K ∈ Kh, vh ∈ V0,h (49)

where Cpoin is the Poincaré constant associated with (44) and CKorn is the positive
constant associated with the following Korn’s inequality [11]:

|w|2H1(Ω) ≤ CKorn

(
‖∇sw‖2

(L2(Ω))d×d + |∂Ω|−1/(d−1)‖w‖2
(L2(∂Ω))d

)
, ∀w ∈ H1(Ω) .

Second, we assume that
Cpen ≥ 4h0|∂Ω|−1/(d−1) (50)

where h0 is the mesh size of the coarsest mesh K0 and |∂Ω| denotes the area of ∂Ω.
This second assumption is necessary as rotation modes carry zero energy when σ = 0.
Hence, weak boundary conditions are needed to control these modes in rotationally
symmetric (or near rotationally symmetric) configurations. As such configurations
are of significant engineering interest, we believe that any analysis results should
cover these situations. Note that a constant Cpen satisfying the above assumption
need not depend on h, σ, or ν. Rather, it only needs to depend on the size of the
domain, the polynomial degree of the discretization, the parametric shape regularity,
and global, mesh-invariant measures of the parametric mapping.

We have the following lemma governing the coercivity of our problem.

Lemma 6.3. Suppose (49) and (50) are satisfied. Then we have

ah(wh,wh) ≥ Ccoerc‖wh‖2
V(h), ∀wh ∈ V̊0,h (51)

where Ccoerc is a positive constant independent of h, σ, ν, and Cpen.
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Proof. Let wh ∈ V̊0,h be arbitrary. We expand

ah(wh,wh) = a(wh,wh)

−
∑
F∈Γh

∫
F

2ν

(
((∇swh) n) ·wh + ((∇swh) n) ·wh −

Cpen
hF

wh ·wh

)
= σ‖wh‖2

H(div;Ω) + 2ν‖∇swh‖2
(L(Ω))d×d + 2ν

∑
F∈Γh

Cpen
hF
‖wh‖2

(L2(F ))d

− 4ν
∑
F∈Γh

∫
F

((∇swh) n) ·wh (52)

where we have used the divergence-free condition on wh to obtain ‖wh‖H(div;Ω) =
‖wh‖L2(Ω). We now use Cauchy-Schwarz to write

4ν
∑
F∈Γh

∫
F

((∇swh) n) ·wh ≤

2ν
∑
F∈Γh

(
2hF
Cpen
‖ (∇swh) n‖2

(L2(F ))d +
Cpen
2hF
‖wh‖2

(L2(F ))d

)
. (53)

Due to Assumption (49) and the Poincaré inequality, we have∑
F∈Γh

2hF
Cpen
‖ (∇swh) n‖2

(L2(F ))d ≤
∑
K∈Kh

1

2CKorn
|wh|2H1(Ω) (54)

where CKorn is the positive constant (only dependent on the domain Ω) associated
with the Korn’s inequality

|w|2H1(Ω) ≤ CKorn

(
‖∇sw‖2

(L(Ω))d×d + |∂Ω|−1/(d−1)‖w‖2
(L2(∂Ω))d

)
, ∀w ∈ H1(Ω) .

(55)
Inserting (54) into (53) gives∑

F∈Γh

∫
F

4ν ((∇swh) n) ·wh ≤ 2ν
∑
F∈Γh

(
1

2CKorn
|wh|2H1(Ω) +

Cpen
2hF
‖wh‖2

(L2(F ))d

)
,

and by inserting the above inequality into (52) and employing (55), we obtain

ah(wh,wh) ≥ σ‖wh‖2
H(div;Ω) +

ν

CKorn
|wh|2H1(Ω)

+
∑
F∈Γh

ν

(
Cpen
hF
− 2

|∂Ω|1/(d−1)

)
‖wh‖2

(L2(F ))d .
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Invoking Assumption (50), we have

ah(wh,wh) ≥ σ‖wh‖2
H(div;Ω) +

ν

CKorn
|wh|2H1(Ω) +

∑
F∈Γh

νCpen
2hF

‖wh‖2
(L2(F ))d

as
hF ≤ h ≤ h0.

The lemma then follows with Ccoerc = C−1
inv min

{
0.25, 0.5 (CKorn)−1} where Cinv is

the constant associated with (45).

We need one more stability estimate. We need to satisfy the Babuška-Brezzi inf-
sup condition. Recall that we already proved an inf-sup condition for our discrete
spaces in Section 5. However, for that inf-sup condition, we utilized the H1-norm for
the velocity space. Here, we must employ the stronger V(h)-norm. To arrive at an
inf-sup condition for this stronger norm, we will proceed by employing three pow-
erful tools: (1) commuting projectors, (2) trace inequalities, and (3) approximation
estimates.

Lemma 6.4. There exists a positive constant β̃ independent of h, σ, and ν such that
the following holds: for every qh ∈ Q0,h, there exists a vh ∈ V0,h such that:

divvh = qh (56)

and

‖vh‖V(h) ≤
σ + 2ν

β̃
‖qh‖Q. (57)

Hence,

inf
qh∈Q0,h,qh 6=0

sup
vh∈V0,h

(divvh, qh)

‖vh‖V(h)‖qh‖Q
≥ β̃. (58)

Furthermore, the inf-sup constant β̃ asymptotically scales inversely with the square
root of Cpen.

Proof. Let qh ∈ Q0,h be arbitrary. Then we know there exists a function v ∈ H1
0(Ω)

such that divv = qh and

2ν‖v‖2
H1(Ω) ≤ 2νβ−2‖qh‖2

L2(Ω)

where β is a positive constant independent of v. Let vh = Π0
Vh v. Then, by Proposi-

tion 5.2, divvh = div Π0
Vh v = Π0

Qh
divv = qh and

2ν‖vh‖2
H1(Ω) ≤ 2νC2

u‖v‖2
H1(Ω) ≤ 2νC2

uβ
−2‖qh‖2

L2(Ω) (59)
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where Cu > 0 is a positive constant independent of h, σ, η, and Cpen. Similarly, we
have

σ‖vh‖2
H(div;Ω) ≤ σC2

uβ
−2‖qh‖2

L2(Ω). (60)

As v satisfies homogeneous Dirichlet boundary conditions, we can apply the contin-
uous trace inequality (see Theorem 3.2 of [26]) to obtain the expression∑

F∈Γh

h−1
F ‖vh‖

2
(L2(F ))d =

∑
F∈Γh

h−1
F ‖vh − v‖2

(L2(F ))d

≤ C2
tr

∑
K∈Kh

(
h−2
K ‖vh − v‖2

L2(K) + |vh − v|2H1(K)

)
where Ctr is a positive constant only dependent on the shape regularity of the mesh
family {Mh}h≤h0 and global, mesh-invariant measures of the parametric mapping.
Proposition 5.5 gives∑

K∈Kh

(
h−2
K ‖vh − v‖2

L2(K) + |vh − v|2H1(K)

)
≤ C2

bound‖v‖2
H1(Ω)

where Cbound is a positive constant independent of h, σ, ν, and Cpen. Thus, we have

2ν
∑
F∈Γh

Cpen
hF
‖vh‖2

(L2(F ))d ≤ 2νC2
boundC

2
trCpenβ

−2‖qh‖2
L2(Ω). (61)

Combining (45), (59), (60), and (61), we have

‖vh‖2
V(h) ≤ Cinvβ

−2
(
C2
u + C2

boundC
2
trCpen

)
(σ + 2ν) ‖qh‖2

L2(Ω).

Hence, (57) holds with

β̃ = C
−1/2
inv

(
C2
u + C2

boundC
2
trCpen

)−1/2
β.

The inverse dependence of the inf-sup constant β̃ on the square root of the penalty
constant Cpen suggests that Cpen should be chosen as small as possible to satisfy
coercivity. Indeed, we have numerically computed the inf-sup constant β̃ for a wide
range of values of Cpen and found that the relationship β̃ . C

−1/2
pen is sharp (for

reference, see the results listed in Table 1). We would like to note that this makes
intuitive sense as we lose inf-sup stability entirely if we enforce the no-slip condition
strongly.

By Lemmata 6.2, 6.3, and 6.4 and Brezzi’s Theorem [12], we immediately have
the following theorem establishing well-posedness.
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Table 1: Dependence of the inf-sup constant β̃ on Nitsche’s penalty constant Cpen for
k′ = 1, h = 1/16, and Ω = (0, 1)2.

Cpen 1 2 4 8 16 32 64

β̃ 4.24e-1 3.89e-1 3.29e-1 2.50e-1 1.82e-1 1.30e-1 9.24e-2
order - -0.13 -0.24 -0.39 -0.46 -0.48 -0.49

Theorem 6.1. Suppose that the assumptions of Lemma 6.3 hold true. Then, Problem
(G) has a unique weak solution (uh, ph) ∈ V0,h ×Q0,h. Furthermore,

‖uh‖V(h) ≤
1

Ccoerc

(
σ + 2νC−2

poin

)−1/2 ‖f‖L2(Ω), (62)

‖ph‖Q ≤
1

β̃

(
σ + 2νC−2

poin

)−1/2
(

1 +
Ccont
Ccoerc

)
‖f‖L2(Ω). (63)

We would like to note that all of the continuity and stability estimates here hold
when ν is identically zero and σ is positive. Hence, we have a unified stability analysis
of Stokes flow and incompressible Darcy flow.

Remark 6.2. Note that for the setting of constant viscosity, one has

∇ · (2ν∇su) = ν∆u. (64)

This inspires a different variational formulation than that presented here which is
often the basis for numerical discretization (see, for example, [19]). However, these
discretizations (and their accompanying mathematical analysis) are not extendable to
the more difficult and physically relevant setting of variable viscosity, and they also
cannot easily accommodate traction boundary conditions.

6.3 A Priori Error Estimates

We are now ready to derive a priori error estimates for our discrete formulation. We
begin with the following lemma.

Lemma 6.5. Let (u, p) and (uh, ph) denote the unique solutions of Problems (W )
and (G) respectively. Furthermore, assume that u ∈ H3/2+ε(Ω) for some ε > 0 and
that the assumptions of Lemma 6.3 hold true. Then

‖u− uh‖V(h) ≤
(

1 +
Ccont
Ccoerc

)
inf

vh∈V̊0,h
‖u− vh‖V(h) (65)

and

‖p− ph‖Q ≤
(

1 +
1

β̃

)
inf

qh∈Q0,h

‖p− qh‖Q +
Ccont

β̃
‖u− uh‖V(h) (66)
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where Ccont is the continuity constants given by Lemma 6.2, Ccoerc is the coercivity
constant given by Lemma 6.3, and β̃ is the inf-sup constant given by Lemma 6.4.

Proof. We first prove (65). We have that, for any vh ∈ V0,h such that divvh = 0,

‖vh − uh‖2
V(h) ≤

1

Ccoerc
a(vh − uh,vh − uh)

=
1

Ccoerc
a(vh − u,vh − uh)

≤ Ccont
Ccoerc

‖vh − u‖V(h)‖vh − uh‖V(h) (67)

where we employed the orthogonality given by Corollary 6.1 and the condition

div (uh − vh) = 0

in the second line of the (67). Hence, we can write

‖u− uh‖V(h) ≤ inf
vh∈V̊0,h

(
‖u− vh‖V(h) + ‖vh − uh‖V(h)

)
≤
(

1 +
Ccont
Ccoerc

)
inf

vh∈V̊0,h
‖u− vh‖V(h). (68)

We now prove (66). We have that, for any qh ∈ Q0,h,

‖ph − qh‖Q ≤
1

β̃
sup

wh∈V0,h

b(ph − qh,wh)

‖wh‖V(h)

=
1

β̃
sup

wh∈V0,h

b(p− qh,wh)− a(u− uh,wh)

‖wh‖V(h)

≤ 1

β̃

(
‖p− qh‖Q + Ccont‖u− uh‖V(h)

)
(69)

where we again employed orthogonality in the second line above. Inequality (66) then
follows in the same manner as (68) by a splitting of the pressure error and a usage of
(69).

We have the following theorem giving us a priori convergence estimates which are
optimal for the discrete velocity field and suboptimal, by one order, for the discrete
pressure field.

Theorem 6.2. Let (u, p) and (uh, ph) denote the unique solutions of Problems (W )
and (G) respectively. Furthermore, assume that (u, p) ∈ Hj+1(Ω) ×Hj(Ω) for some
j > 1/2 and that the assumptions of Lemma 6.3 hold true. Then

‖u− uh‖V(h) ≤ Cu

(
1 +

Ccont
Ccoerc

)√
σh2s+2 + 2νh2s‖u‖Hs+1(Ω) (70)
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and

‖p− ph‖Q ≤ Cp

(
1 +

1

β̃

)
(σ + 2ν)−1/2 hs‖p‖Hs(Ω) +

Ccont

β̃
‖u− uh‖V(h) (71)

for s = min {k′, j} where k′ is the polynomial degree of our discretization, Cu is a
positive constant independent of h, σ, and ν which asymptotically scales with the
square root of Cpen, and Cp is a positive constant independent of h, σ, ν, and Cpen.

Proof. We first prove (70). Recall the error estimate given by (65):

‖u− uh‖V(h) ≤
(

1 +
Ccont
Ccoerc

)
inf

vh∈V̊0,h
‖u− vh‖V(h).

Noting div Π0
Vh u = Π0

Qh
divu = 0, we can choose vh = Π0

Vh u in the above expression
to obtain

‖u− uh‖V(h) ≤
(

1 +
Ccont
Ccoerc

)
‖u− Π0

Vh u‖V(h)

= Cco
√
T1 + T2 + T3 + T4 (72)

where we have assigned Cco =
(

1 + Ccont

Ccoerc

)
and

T1 = σ‖u− Π0
Vh u‖2

H(div;Ω) = σ‖u− Π0
Vh u‖2

L2(Ω) (73)

T2 = 2ν|u− Π0
Vh u|2H1(Ω) (74)

T3 = 2ν
∑
F∈Γh

hF‖
(
∇s
(
u− Π0

Vh u
))

n‖2
(L2(F ))d (75)

T4 = 2ν
∑
F∈Γh

Cpenh
−1
F ‖u− Π0

Vh u‖2
(L2(F ))d . (76)

To handle the face integral in (75), we recruit the multiplicative trace inequality
for fractional Sobolev spaces [57] and Young’s inequality element-wise to obtain the
bound ∑

F∈Γh

CpenhF‖
(
∇s
(
u− Π0

Vh u
))

n‖2
(L2(F ))d ≤

(Ctrc,1)2
∑
K∈Kh

(
|u− Π0

Vh u|2H1(K) + h2q
K |u− Π0

Vh u|2Hq+1(Ω)

)
where 1/2 < q ≤ s and Ctrc,1 is a positive constant independent of h, σ, ν, and
Cpen. To handle the face integral in (76), we recruit the standard continuous trace
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inequality element-wise to obtain the bound∑
F∈Γh

Cpenh
−1
F ‖u− Π0

Vh u‖2
(L2(F ))d ≤

(Ctrc,2)2
∑
K∈Kh

(
h−2
K ‖u− Π0

Vh u‖2
L2(K) + |u− Π0

Vh u|2H1(K)

)
where Ctrc,2 is a positive constant independent of h, σ, and ν which varies linearly
with the square root of Cpen. It should be noted the two constants Ctrc,1 and Ctrc,2
necessarily depend on the shape regularity of the mesh family {Q}h≤h0 and the para-
metric mapping which together give the shape regularity of the mesh family {K}h≤h0 .
See [26] for more details. Inserting the above two inequalities into (72) and then
applying Proposition 5.5, we immediately acquire the bound

‖u− Π0
Vh u‖V(h) ≤ CuCco

√
σh2s+2 + 2νh2s‖u‖Hs+1(Ω)

for Cu a positive constant independent of h, σ, and ν with the same functional
dependency on the penalty parameter as Ctrc,2.

The proof for (71) is much more immediate. Choosing qh = Π0
Qh
p in the error

estimate given by (66), one obtains

‖p− ph‖Q ≤
(

1 +
1

β̃

)
‖p− Π0

Qh
p‖Q +

Ccont

β̃
‖u− uh‖V(h).

Inequality (71) follows by an application of Proposition 5.5 to bound the pressure
interpolation error.

Since we have the bound

2ν| · |H1(Ω) . ‖ · ‖V(h),

the above theorem also provides optimal convergence rates for the velocity field in
the H1-norm. If we assume slightly more regularity for the pressure space, we have
the following proposition.

Proposition 6.1. Let (u, p) and (uh, ph) denote the unique solutions of Problems
(W ) and (G) respectively. Furthermore, assume that (u, p) ∈ Hj+1(Ω) × Hj+1(Ω)
for some j > 1/2 and that the assumptions of Lemma 6.3 hold true. Then

‖p− ph‖Q ≤ Cp,e

(
1 +

1

β̃

)
(σ + 2ν)−1/2 hs+1‖p‖Hs+1(Ω) +

Ccont

β̃
‖u− uh‖V(h) (77)

for s = min {k′, j} where Cp,e is a positive constant independent of h, σ, ν, and Cpen.
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Observe that the pressure error estimate given by the above proposition is still
suboptimal due to the presence of the velocity error, which converges with order s for
general viscous flows. Let us further note that the preceding theorem and proposition
are trivially extended to the setting of vanishing viscosity. In this case, the velocity
error actually converges with order s+ 1, giving optimal a priori error estimates for
both the discrete pressure field and discrete velocity field for incompressible Darcy
flow.

Under an elliptic regularity assumption, we can obtain optimal estimates for the
velocity field in the L2-norm by utilizing a standard duality argument. Given the
unique solutions (u, p) and (uh, ph) of Problems (W ) and (G), let us consider the
following ancillary problem, written in strong form.

(A)



Find (ψ, r) ∈ H1
0(Ω) × L2

0(Ω) such that

σψ −∇ · (2ν∇sψ) + gradr = u− uh in Ω (78)

divψ = 0 in Ω (79)

ψ = 0 on ∂Ω. (80)

The above problem has a unique weak solution (ψ, r). Before proceeding, note that
we can formally take the divergence of (78) to obtain

∆r = 0, in Ω. (81)

Since r has zero average, it follows, at least from our formal argument, that r = 0.
This argument can be made rigorous by a suitable use of convolutions and passing
to the limit. Now suppose that ψ ∈ H2(Ω). We can then multiply the left and right
hand sides of (78) by σψ +∇ · (2ν∇sψ) to acquire the result

‖σψ‖2
L2(Ω) + ‖∇ · (2ν∇sψ) ‖2

L2(Ω) = (u− uh, σψ +∇ · (2ν∇sψ))L2(Ω) . (82)

A simple application of Cauchy-Schwarz and the triangle inequality gives

‖σψ‖2
L2(Ω) + ‖∇ · (2ν∇sψ) ‖2

L2(Ω) =

‖u− uh‖L2(Ω)

(
‖σψ‖L2(Ω) + ‖∇ · (2ν∇sψ) ‖L2(Ω)

)
(83)

Since x2 +y2 ≥ 1
2
(x+y)2, we can divide both sides by ‖σψ‖L2(Ω) +‖∇·(2ν∇sψ) ‖L2(Ω)

to obtain
1

2

(
‖σψ‖L2(Ω) + ‖∇ · (2ν∇sψ) ‖L2(Ω)

)
≤ ‖u− uh‖L2(Ω). (84)

As ψ satisfies normal and tangential homogeneous Dirichlet boundary conditions
and ν is assumed positive, we can employ a combination of Korn’s inequalities and
Poincaré inequalities to obtain a standard elliptic regularity result of the form

‖ψ‖H2(Ω) ≤ CAν
−1‖u− uh‖L2(Ω). (85)

where CA is a positive constant which only depends on the domain Ω. In view of the
above discussion, we have the following theorem.
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Theorem 6.3. Let (u, p) and (uh, ph) denote the unique solutions of Problems (W )
and (G) respectively, and let (ψ, r) denote the unique solution of Problem (A). Fur-
thermore, assume that (u, p) ∈ Hj+1(Ω) ×Hj(Ω) for some j ≥ 1, that ψ ∈ H2(Ω),
and that the assumptions of Lemma 6.3 hold true. Then

‖u− uh‖L2(Ω) ≤ Clh
s+1‖u‖Hs+1(Ω) (86)

for s = min {k′, j} where Cl is a positive constant independent of h, σ, and ν which
asymptotically scales with the square root of Cpen.

Proof. Since by assumption (ψ, r) ∈ H2(Ω)×H1(Ω), consistency and symmetry give

ah(v,ψ)− b(r,v) = (u− uh,v)L2(Ω)

for all v ∈ Vh. Let us take v = u− uh. We then have

‖u− uh‖2
L2(Ω) = ah(u− uh,ψ).

as div (u− uh) = 0 (or r = 0 by our preceding discussion). By using the orthogonality
given by Corollary 6.1, we can write

‖u− uh‖2
L2(Ω) = ah(u− uh,ψ − Π0

Vhψ)

≤ Ccont‖u− uh‖V(h)‖ψ − Π0
Vhψ‖V(h). (87)

We bound the interpolation error by utilizing a similar argument to that used to
prove (77), obtaining

‖ψ − Π0
Vhψ‖V(h) ≤ Cinterp

(
σ1/2h2 + ν1/2h

)
‖ψ‖H2(Ω)

for Cinterp a positive constant independent of h, σ, and ν which asymptotically scales
with the the square root of Cpen. We can now employ the elliptic regularity condition
(85) to arrive at

‖ψ − Π0
Vhψ‖V(h) ≤ CACinterp

(
σ1/2ν−1h2 + ν−1/2h

)
‖u− uh‖L2(Ω). (88)

Inserting (88) into (87) results in

‖u− uh‖L2(Ω) ≤ CACinterpCcont
(
σ1/2ν−1h2 + ν−1/2h

)
‖u− uh‖V(h).

Immediately invoking the error estimate given by Theorem 6.2, we obtain

‖u− uh‖L2(Ω) ≤ Ctemp

(
1 +

√
Dah

)2

hs+1‖u‖Hs+1(Ω) (89)
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where Ctemp is a positive constant independent of h, σ, and ν which asymptotically
scales with the square root of Cpen and

Dah =
σh2

ν
.

However, we also have the following estimate due to Theorem 6.2:

‖u− uh‖L2(Ω) ≤ Cu

(
1 +

Ccont
Ccoerc

)(
1 + (Dah)

−1)1/2
hs+1‖u‖Hs+1(Ω). (90)

The desired result follows by taking the minimum of (89) and (90).

This concludes our a priori error analysis. Note that, for reasonably regular
exact solutions, we have obtained optimal estimates for the velocity field in both
the strong V(h)-norm as well as the weaker H1- and L2-norms. The estimates are
additionally robust with respect to the fluid coefficients σ and ν. On the other
hand, we have obtained pressure error estimates which are suboptimal by one order.
This is reminiscent of error estimates for stabilized equal-order interpolations of the
Stokes equations and is not unexpected as both our discrete velocity and pressure
spaces consist of mapped piecewise polynomials which are only complete up to degree
k′. However, our later numerical studies suggest the conservative nature of these
estimates by revealing, for simple model problems, optimal convergence rates for the
pressure field. Ongoing work is being dedicated to the theoretical confirmation of
these convergence rates. Note that our analysis covers typical singular solutions of
the generalized Stokes equations. Later in this chapter, we will numerically study the
effectiveness of our method for a selection of singular Stokes problems. Finally, we
would like to mention that our velocity error estimates are completely independent
of the pressure field. This property does not hold for discretizations which preserve
the incompressibility in only a discrete sense.

Remark 6.3. In opposition to standard Bubnov-Galerkin methods, the constant(
1 + Ccont (Ccoerc)

−1)
appearing in (65) cannot be reduced to just Ccont (Ccoerc)

−1.

Remark 6.4. At this point, suitable requirements guaranteeing elliptic regularity for
domains obtained by NURBS mappings are unknown. One anticipates that such re-
quirements should be less stringent than those associated with polyhedral domains
(namely, convexity) because of enhanced smoothness. In our view, this is an interest-
ing area of research.
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Figure 8: Example multi-patch construction in R2.

7 Extension to Multi-Patch Domains

As was mentioned previously in Subsection 4.3, most geometries of scientific and
engineering interest cannot be represented by a single patch. Instead, the multi-
patch concept must be invoked. We assume that there exist np sufficiently smooth
parametric mappings Fi : (0, 1)d → Rd such that the subdomains

Ωi = Fi

(
Ω̂
)
, i = 1, . . . , np

are non-overlapping and
Ω = ∪np

i=1Ωi.

We refer to each subdomain Ωi (and its pre-image) as a patch. For a visual depiction
of a multi-patch construction in R2, see Figure 8. We build discrete velocity and
pressure spaces over each patch Ωi, i = 1, . . . , np in the same manner as in the
previous sections except that we do not yet enforce boundary conditions, and we
denote these spaces as Vh(Ωi) and Qh(Ωi).

To proceed further, we must make some assumptions. First of all, we assume that
if two disjoint patches Ωi and Ωj have the property that ∂Ωi ∩ ∂Ωj 6= ∅, then this
intersection consists strictly of patch faces, edges, and corners. More succinctly, two
patches cannot intersect along an isolated portion of a face (or edge) interior. Second,
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we assume that the mappings {Fi}np

i=1 are compatible in the following sense: if two
patches Ωi and Ωj share a face, then Fi and Fj parametrize that face identically up
to changes in orientation. Third, we assume that if two patches Ωi and Ωj share a
face, the B-spline meshes associated with the patches are identical along that face.
This guarantees our mesh is conforming. Finally, we assume for simplicity that k1 =
. . . = kd = k∗ for all patches. The mixed polynomial degree case introduces additional
complications that are beyond the scope of this work. We would like to note that all
four assumptions hold if we employ a conforming NURBS multi-patch construction.
See, for example, Chapter 2 of [20].

We define our global discrete velocity and pressure spaces as follows:

V0,h := {vh ∈ H0 (div; Ω) : vh|Ωi
∈ Vh(Ωi), ∀i = 1, . . . , np} , (91)

Q0,h :=
{
qh ∈ L2

0 (Ω) : qh|Ωi
∈ Qh(Ωi), ∀i = 1, . . . , np

}
. (92)

The space V0,h is easily constructed due to our preceding four assumptions and use
of open knot vectors. Specifically, we set to zero the coefficient of any basis function
whose normal is nonzero along ∂Ω, and along shared faces between patches, we (i)
equivalence the coefficients of any basis functions whose normal values are nonzero
and equal in magnitude and direction and (ii) set opposite the coefficients of any
basis functions whose normal values are nonzero, equal in magnitude, and opposite
in direction. We note that this is precisely the same procedure as is used to construct
Raviart-Thomas spaces on conforming finite element meshes. We simply have patches
instead of elements. It is easily shown that the spaces V0,h and Q0,h, along with the
divergence operator, form the bounded discrete cochain complex

V0,h
div−−−→ Q0,h.

However, functions in V0,h do not necessarily lie in H1(Ω) as tangential continuity is
not enforced across patch interfaces. Hence, we need to account for this lack of conti-
nuity when designing a discretization scheme for the generalized Stokes equations. We
employ the symmetric interior penalty method [1, 24, 62], a standard technique in the
discontinuous Galerkin community, to weakly enforce tangential continuity between
adjacent patches.

We now establish some preliminary notation. Let Kh(Ωi) and Fh(Ωi) denote the
sets of physical mesh elements and faces associated with patch Ωi. We denote the
global set of mesh elements as Kh and the global set of mesh faces as Fh. As in the
single patch setting, we define the boundary mesh to be

Γh = {F ∈ Fh(Ωi), i = 1, . . . , np : F ⊂ ∂Ω} , (93)

and we define the interface mesh to be

Ih = {F ∈ Fh(Ωi), i = 1, . . . , np : F ∈ Fh(Ωj), i 6= j and F /∈ Γh} . (94)
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For each face F ∈ Ih belonging to the interface mesh, there exist two unique adjacent
elements K+, K− ∈ Kh such that F ∈ ∂K+ and F ∈ ∂K−. We define for such a face
the mesh size

hF :=
1

2
(hK+ + hK−) . (95)

Let φ be an arbitrary scalar-, vector-, or matrix-valued piecewise smooth function,
and let us denote by φ+ and φ− the traces of φ on F as taken from within the interior
of K+ and K− respectively. We define the mean value of φ at x ∈ F as

{{φ}} :=
1

2

(
φ+ + φ−

)
. (96)

Further, for a generic multiplication operator �, we define the jump of φ�n at x ∈ F
as

Jφ� nK := φ+ � nK+ + φ− � nK− (97)

where nK+/− denotes the outward facing normal on the boundary ∂K+/− of element
K+/−.

With the above notation established, let us define the following bilinear form:

a∗h(w,v) =

np∑
i=1

(
(2ν∇sw,∇sv)(L2(Ωi))d×d + (σw,v)L2(Ωi

)
)

−
∑
F∈Ih

∫
F

2ν ({{∇sv}} : Jw⊗ nK + {{∇sw}} : Jv⊗ nK) ds

+
∑
F∈Ih

∫
F

2ν

(
2Cpen
hF

Jw⊗ nK : Jv⊗ nK
)
ds

−
∑
F∈Γh

∫
F

2ν

(
((∇sv) n) ·w + ((∇sw) n) · v− Cpen

hF
w · v

)
ds. (98)

Above, Cpen > 0 denotes the same positive penalty constant as before. Our discrete
formulation over the multi-patch domain then reads as follows.

(MP )


Find uh ∈ V0,h and ph ∈ Q0,h such that

a∗h(uh,vh)− b(ph,vh) + b(qh,uh) = (f,vh)L2(Ω) (99)

for all vh ∈ V0,h and qh ∈ Q0,h.

As in the single patch setting, the discrete formulation detailed above returns a point-
wise divergence-free velocity field. However, we do not have a convergence analysis
available as we do not yet have a multi-patch analogue of Proposition 5.2. We antic-
ipate this will take new theoretical developments. Nonetheless, we have utilized the
above formulation in practice and observed it returns optimal convergence rates for
both velocity and pressure fields.
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8 Numerical Verification of Convergence Estimates

In this section, we numerically verify our convergence estimates using a collection of
problems with exact solutions. Throughout, we choose Nitsche’s penalty constant as

Cpen = 5(k′ + 1)

where k′ is the polynomial degree of a given discretization. We have found that this
choice leads to stable numerical formulations for the generalized Stokes equations.
Furthermore, unless otherwise specified, we employ uniform parametric meshes, linear
parametric mappings, and B-spline spaces of maximal continuity.

8.1 Two-Dimensional Manufactured Solution

As a first numerical experiment, we consider a two-dimensional manufactured solution
that was originally presented in [14]. Let

Ω ≡ (0, 1)2

and
f ≡ σū−∇ · (2ν∇sū) +∇p̄

with

ū =

[
2ex(−1 + x)2x2(y2 − y)(−1 + 2y)

(−ex(−1 + x)x(−2 + x(3 + x))(−1 + y)2y2)

]
and

p̄ = (−424 + 156e+ (y2 − y)(−456 + ex(456 + x2(228− 5(y2 − y))+
2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y))))).

Homogeneous boundary conditions are applied along the boundary ∂Ω, and the pres-
sure is enforced to satisfy

∫
Ω
pdx = 0. The unique solution to the generalized Stokes

equation with the prescribed forcing is then clearly (u, p) = (ū, p̄). The streamlines
and pressure contours associated with the exact solution are plotted in Figure 9. Note
from the streamline plot that the velocity solution has a simple vortex structure.

For the above constructed solution, we have computed convergence rates for
divergence-conforming B-spline discretizations of varying mesh size and polynomial
degree. Furthermore, we have computed convergence rates for a variety of Damköhler
numbers

Da =
σL2

ν

where L is a length parameter which we henceforth specify as one. These convergence
rates are provided in Tables 2, 3, and 4. Note immediately from the tables that our
theoretically derived error estimates are confirmed. Second, note that the L2-norm
of the pressure error optimally converges like O(hk

′+1), which is an improvement
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Figure 9: Generalized Stokes manufactured solution in 2-D: (a) Flow velocity stream-
lines, (b) Pressure contours.
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Table 2: Generalized Stokes convergence rates in 2-D: Da = 0

Polynomial degree k′ = 1

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 7.75e-2 3.96e-2 1.98e-2 9.90e-3 4.95e-3

order - 0.97 1.00 1.00 1.00
|u− uh|H1(Ω) 5.48e-2 2.80e-2 1.40e-2 7.00e-3 3.50e-3

order - 0.97 1.00 1.00 1.00
‖u− uh‖L2(Ω) 2.77e-3 8.16e-4 2.28e-4 6.10e-5 1.58e-5

order - 1.76 1.84 1.90 1.95
‖p− ph‖L2(Ω) 5.04e-3 1.38e-3 3.49e-4 8.72e-5 2.18e-5

order - 1.87 1.98 2.00 2.00

Polynomial degree k′ = 2

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 1.37e-2 3.30e-3 8.03e-4 1.98e-4 4.92e-5

order - 2.06 2.04 2.02 2.01
|u− uh|H1(Ω) 9.70e-3 2.33e-3 5.68e-4 1.40e-4 3.48e-5

order - 2.06 2.04 2.02 2.01
‖u− uh‖L2(Ω) 2.94e-4 3.84e-5 5.03e-6 6.47e-7 8.21e-8

order - 2.94 2.93 2.96 2.98
‖p− ph‖L2(Ω) 1.18e-3 1.19e-4 1.17e-5 1.19e-6 1.27e-7

order - 3.31 3.35 3.30 3.23

Polynomial degree k′ = 3

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 1.39e-3 1.81e-4 2.33e-5 3.01e-6 3.85e-7

order - 2.94 2.96 2.95 2.97
|u− uh|H1(Ω) 9.83e-4 1.28e-4 1.65e-5 2.10e-6 2.66e-7

order - 2.94 2.96 2.97 2.98
‖u− uh‖L2(Ω) 3.05e-5 2.34e-6 1.59e-7 1.03e-8 6.55e-10

order - 3.70 3.88 3.95 3.98
‖p− ph‖L2(Ω) 1.10e-4 5.64e-6 3.45e-7 2.19e-8 1.39e-9

order - 4.29 4.03 3.98 3.98
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Table 3: Generalized Stokes convergence rates in 2-D: Da = 1

Polynomial degree k′ = 1

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 7.75e-2 3.96e-2 1.98e-2 9.90e-3 4.95e-3

order - 0.97 1.00 1.00 1.00
|u− uh|H1(Ω) 5.47e-2 2.80e-2 1.40e-2 7.00e-3 3.50e-3

order - 0.97 1.00 1.00 1.00
‖u− uh‖L2(Ω) 2.75e-3 8.09e-4 2.26e-4 6.05e-5 1.57e-5

order - 1.76 1.84 1.90 1.95
‖p− ph‖L2(Ω) 5.04e-3 1.37e-3 3.48e-4 8.72e-5 2.18e-5

order - 1.88 1.98 2.00 2.00

Polynomial degree k′ = 2

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 1.37e-2 3.30e-3 8.03e-4 1.98e-4 4.92e-5

order - 2.06 2.04 2.02 2.01
|u− uh|H1(Ω) 9.70e-3 2.33e-3 5.68e-4 1.40e-4 3.48e-5

order - 2.06 2.04 2.02 2.01
‖u− uh‖L2(Ω) 2.94e-4 3.84e-5 5.03e-6 6.47e-7 8.21e-8

order - 2.94 2.93 2.96 2.98
‖p− ph‖L2(Ω) 1.18e-3 1.19e-4 1.17e-5 1.19e-6 1.27e-7

order - 3.31 3.35 3.30 3.23

Polynomial degree k′ = 3

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 1.39e-3 1.81e-4 2.35e-5 3.01e-6 3.85e-7

order - 2.94 2.95 2.96 2.97
|u− uh|H1(Ω) 9.83e-4 1.28e-4 1.65e-5 2.10e-6 2.66e-7

order - 2.94 2.96 2.97 2.98
‖u− uh‖L2(Ω) 3.05e-5 2.34e-6 1.59e-7 1.03e-8 6.55e-10

order - 3.70 3.88 3.95 3.98
‖p− ph‖L2(Ω) 1.10e-4 5.64e-6 3.45e-7 2.19e-8 1.39e-9

order - 4.29 4.03 3.98 3.98
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Table 4: Generalized Stokes convergence rates in 2-D: Da = 1000

Polynomial degree k′ = 1

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 3.13e-3 1.33e-3 6.36e-4 3.14e-4 1.57e-4

order - 1.23 1.06 1.02 1.00
|u− uh|H1(Ω) 5.50e-2 2.78e-2 1.39e-2 6.98e-3 3.49-3

order - 0.98 1.00 0.99 1.00
‖u− uh‖L2(Ω) 1.93e-3 4.79e-4 1.22e-4 3.20e-5 8.38e-6

order - 2.01 1.97 1.93 1.93
‖p− ph‖L2(Ω) 3.37e-3 7.97e-4 1.96e-4 4.89e-5 1.22e-5

order - 2.08 2.02 2.00 2.00

Polynomial degree k′ = 2

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 5.24e-4 1.11e-4 2.58e-5 6.30e-6 1.55e-6

order - 2.24 2.11 2.03 2.02
|u− uh|H1(Ω) 9.85e-3 2.32e-3 5.67e-4 1.40e-4 3.48e-5

order - 2.08 2.03 2.02 2.01
‖u− uh‖L2(Ω) 2.83e-4 3.80e-5 5.01e-6 6.46e-7 8.21e-8

order - 2.90 2.92 2.96 2.98
‖p− ph‖L2(Ω) 4.69e-4 5.36e-5 6.42e-6 7.97e-7 9.98e-8

order - 3.13 3.06 3.01 3.00

Polynomial degree k′ = 3

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖V(h) 5.31e-5 6.12e-6 7.57e-7 9.56e-8 1.22e-8

order - 3.12 3.02 2.99 2.97
|u− uh|H1(Ω) 9.74e-4 1.26e-4 1.64e-5 2.10e-6 2.66e-7

order - 2.95 2.94 2.97 2.98
‖u− uh‖L2(Ω) 3.04e-5 2.33e-6 1.59e-7 1.03e-8 6.55e-10

order - 3.71 3.89 3.95 3.98
‖p− ph‖L2(Ω) 7.56e-5 4.60e-6 3.19e-7 2.12e-8 1.37e-9

order - 4.04 3.89 3.91 3.95
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Figure 10: Generalized Stokes manufactured solution in 3-D: Flow velocity stream-
lines colored by velocity magnitude.

over our theoretically derived estimate. Third, note that our methodology is robust
with respect to the Damköhler number. That is, the errors for our discretization
are virtually independent of the Damköhler number. In fact, our pressure error
decreases with increasing Damköhler number. Finally, it should be mentioned that
(a) the H1 error of the velocity field approaches the H1 best approximation error
as k′ is increased, and (b) the L2 error of the pressure field approaches the L2 best
approximation error as k′ is increased.

8.2 Three-Dimensional Manufactured Solution

As a second numerical experiment, we consider a three-dimensional manufactured
solution representing a vortical filament. Let

Ω ≡ (0, 1)3

and
f ≡ σū−∇ · (2ν∇sū) +∇p̄

with
ū = curlφ̄,

φ̄ =

 x(x− 1)y2(y − 1)2z2(z − 1)2

0
x2(x− 1)2y2(y − 1)2z(z − 1)

 ,
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Table 5: Generalized Stokes convergence rates in 3-D: Da = 0

Polynomial degree k′ = 1

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 2.59e-2 1.27e-2 5.91e-3 2.81e-3 1.36e-3

order - 1.03 1.10 1.07 1.05
|u− uh|H1(Ω) 1.51e-2 7.64e-3 3.77e-3 1.87e-3 9.34e-4

order - 0.98 1.02 1.01 1.00
‖u− uh‖L2(Ω) 1.35e-3 3.68-4 1.03e-4 2.81e-5 7.40e-6

order - 1.88 1.84 1.87 1.93
‖p− ph‖L2(Ω) 5.41e-2 1.48e-2 3.58e-3 8.85e-4 2.26e-4

order - 1.87 2.05 2.02 1.97

Polynomial degree k′ = 2

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 6.50e-3 1.54e-3 4.10e-4 9.51e-5 2.15e-5

order - 2.08 1.91 2.11 2.15
|u− uh|H1(Ω) 3.71e-3 9.90e-4 2.79e-4 6.59e-5 1.50e-5

order - 1.91 1.83 2.08 2.14
‖u− uh‖L2(Ω) 1.97e-4 4.25e-5 7.38e-6 8.67e-7 9.18e-8

order - 2.21 2.53 3.09 3.23
‖p− ph‖L2(Ω) 1.50e-2 1.59e-3 2.00e-4 2.56e-5 3.26e-6

order - 3.24 2.99 2.97 2.97

and

p̄ = sin(πx) sin(πy)− 4

π2
.

Again, homogeneous boundary conditions are applied along the boundary ∂Ω, and
the pressure is enforced to satisfy

∫
Ω
pdx = 0. The unique solution to the generalized

Stokes equation with the prescribed forcing is then (u, p) = (ū, p̄). Streamlines asso-
ciated with the exact solution are plotted in Figure 10. Note that the the streamlines
wrap around a single diagonal vortex filament.

As in the two-dimensional setting, we have computed convergence rates for a
variety of divergence-conforming B-spline discretizations and Damköhler numbers

Da =
σL2

ν

where L is a length parameter which we again specify as equal to one. These conver-
gence rates are summarized in Tables 5, 6, and 7. Note immediately from the tables
that our theoretically derived error estimates are confirmed. Second, note that the
L2-norm of the pressure error optimally converges like O(hk

′+1), which is an improve-
ment over our theoretically derived estimate. Third, note that our method is robust
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Table 6: Generalized Stokes convergence rates in 3-D: Da = 1

Polynomial degree k′ = 1

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 2.59e-2 1.28e-2 5.91e-3 2.81e-3 1.36e-3

order - 1.02 1.11 1.07 1.05
|u− uh|H1(Ω) 1.51e-2 7.64e-3 3.77e-3 1.87e-3 9.33e-4

order - 0.98 1.02 1.01 1.00
‖u− uh‖L2(Ω) 1.34e-3 3.66e-4 1.02e-4 2.79e-5 7.34e-6

order - 1.87 1.84 1.87 1.93
‖p− ph‖L2(Ω) 5.41e-2 1.48e-2 3.58e-3 8.85e-4 2.21e-4

order - 1.87 2.05 2.02 2.00

Polynomial degree k′ = 2

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 6.50e-3 1.54e-3 4.10e-4 9.50e-5 2.15e-5

order - 2.08 1.91 2.11 2.14
|u− uh|H1(Ω) 3.71e-3 9.89e-4 2.79e-4 6.59e-5 1.50e-5

order - 1.91 1.83 2.08 2.14
‖u− uh‖L2(Ω) 1.97e-4 4.24e-5 7.38e-6 8.64e-7 9.18e-8

order - 2.22 2.52 3.09 3.23
‖p− ph‖L2(Ω) 1.50e-2 1.59e-3 2.00e-4 2.56e-5 3.26e-6

order - 3.24 2.99 2.97 2.97
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Table 7: Generalized Stokes convergence rates in 3-D: Da = 1000

Polynomial degree k′ = 1

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 1.55e-3 5.16e-4 2.04e-4 9.07e-5 4.32e-5

order - 1.59 1.34 1.17 1.07
|u− uh|H1(Ω) 1.56e-2 7.57e-3 3.74e-3 1.86e-3 9.31e-4

order - 1.04 1.02 1.01 1.00
‖u− uh‖L2(Ω) 1.16e-3 2.58e-4 6.29e-5 1.59e-5 4.11e-6

order - 2.17 2.04 1.98 1.95
‖p− ph‖L2(Ω) 5.41e-2 1.48e-2 3.57e-3 8.84e-4 2.20e-4

order - 1.87 2.05 2.01 2.01

Polynomial degree k′ = 2

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 2.98e-4 5.25e-5 1.06e-5 2.42e-6 5.84e-7

order - 2.50 2.31 2.13 2.05
|u− uh|H1(Ω) 3.79e-3 8.56e-4 2.08e-4 5.14e-5 1.28e-5

order - 2.15 2.04 2.02 2.01
‖u− uh‖L2(Ω) 1.88e-4 2.84-5 3.74e-6 4.97e-7 6.06e-8

order - 2.73 2.93 2.91 3.04
‖p− ph‖L2(Ω) 1.50e-2 1.59e-3 2.00e-4 2.56e-5 3.26e-6

order - 3.24 2.99 2.97 2.97
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with respect to the Damköhler number. Finally, let us remark the exact velocity field
is recovered for discretizations of degree k′ ≥ 3.

8.3 Two-Dimensional Problem with a Singular Solution

To examine how our discretization performs in the presence of singularities, we con-
sider Stokes flow in the L-shaped domain Ω = (−1, 1)2)\([0, 1) × (−1, 0]). The flow
problem in consideration is depicted in Figure 11(a). Homogeneous Dirichlet bound-
ary conditions are applied along ΓD = {(0, y) : y ∈ (−1, 0)} ∪ {(x, 0) : x ∈ (0, 1)},
Neumann boundary conditions are applied along ΓN = ∂Ω\ΓD, and we set σ = 0,
ν = 1, and f = 0. As in [60], the Neumann boundary conditions are chosen such that
the exact solution is

u =

[
rλ((1 + λ) sin(θ)ψ(θ) + cos(θ)ψ′(θ)
rλ(−(1 + λ) cos(θ)ψ(θ) + sin(θ)ψ′(θ)

]
and

p = −rλ−1 ((1 + λ)2φ′(θ) + φ′′′(θ)) /(1− λ)

where (r, θ) are polar coordinates with respect to the origin (0, 0),

φ = sin((1 + λ)θ) cos(λω)/(1 + λ)− cos((1 + λ)θ)
− sin((1− λ)θ) cos(λω)/(1− λ) + cos((1− λ)θ),

ω = 3
2
φ, and λ ≈ 0.54448373678246 is the smallest positive root of

sin(λω) + λ sin(ω) = 0.

This singular solution is illustrated in Figure 12. Note that (u, p) ∈ H1+λ(Ω) ×
Hλ(Ω). This is the strongest corner singularity for the Stokes operator in the L-
shaped domain, and, as such, this numerical example models typical singular behavior
observed in the vicinity of reentrant corners.

To compute this flow example using our discretization technique, we must resort
to a multi-patch construction. We utilize the three-patch construction illustrated in
Figure 11(b). Each patch is mapped from the parametric domain using an affine
parametrization. As discussed in Section 7, we impose normal continuity strongly be-
tween patches and tangential continuity weakly using the symmetric interior penalty
method. We have computed convergence rates for a variety of divergence-conforming
B-spline discretizations and reported our results in Table 8. Note from the table that
the V(h)-norm of the velocity field and the L2-norm of the pressure field are approach-
ing the optimal convergence rates of O(hλ) as h→ 0. Furthermore, note the velocity
and pressure errors improve with increasing polynomial degree. This is somewhat
counterintuitive as we also increase smoothness with polynomial degree. This being
said, such a property has also been observed in the context of Maxwell’s equations
[15]. While we only employed uniform meshes for the computations reported here,
one could of course obtain more satisfactory results with geometrically graded meshes
[30, 31].
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Figure 11: Singular Stokes solution in 2-D: (a) Problem setup, (b) Multi-patch con-
struction.
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Figure 12: Singular Stokes solution in 2-D: (a) Flow velocity streamlines, (b) Pressure
contours.
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Table 8: Singular Stokes convergence rates in 2-D

Polynomial degree k′ = 1

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 2.29e0 1.61e0 1.13e0 7.73e-1 5.33e-1

order - 0.51 0.51 0.55 0.54
‖p− ph‖L2(Ω) 1.30e0 9.40e-1 6.62e-1 4.66e-1 3.32e-1

order - 0.47 0.51 0.51 0.49

Polynomial degree k′ = 2

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 1.50e0 1.05e0 7.25e-1 5.00e-1 3.46e-1

order - 0.51 0.53 0.54 0.53
‖p− ph‖L2(Ω) 8.56e-1 6.39e-1 4.50e-1 3.20e-1 2.36e-1

order - 0.42 0.51 0.49 0.44

Polynomial degree k′ = 3

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 1.15e0 8.36e-1 5.79e-1 4.00e-1 2.78e-1

order - 0.46 0.53 0.53 0.52
‖p− ph‖L2(Ω) 6.05e-1 4.90e-1 3.54e-1 2.57e-1 1.91e-1

order - 0.30 0.47 0.46 0.43
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8.4 Cylindrical Couette Flow

Couette flow is often used as a “sanity check” for Stokes and Navier-Stokes discretiza-
tions. Cylindrical Couette flow is a more realistic problem which describes the flow
between two concentric rotating cylinders. Here, we consider generalized Stokes flow
between a fixed outer cylinder and a rotating inner cylinder. The problem setup is
illustrated in Figure 13. No external forcing is applied. In the absence of Darcy drag
forces (i.e., σ = 0), the velocity field for this flow assumes the form

u =

[
uθ(r) sin(θ)
uθ(r) cos(θ)

]
where

uθ(r) = Ar +
B

r
,

(r, θ) are polar coordinates with respect to the center of the cylinders, and

A = −Ωin
δ2

1− δ2
, B = Ωin

r2
in

(1− δ2)
, Ωin =

U

rin
, δ =

rin
rout

.

We have depicted this velocity field in Figure 14(a). In the presence of Darcy drag
forces, the character of the flow field changes considerably. Notably, the motion of
the fluid is confined to a small boundary layer attached to the inner cylinder. This
motion explicitly takes the form

u =

[
uθ(r) sin(θ)
uθ(r) cos(θ)

]
where

uθ(r) = U
I1(γr)K1(γrout)− I1(γrout)K1(γr)

I1(γrin)K1(γrout)− I1(γrout)K1(γrin)
,

γ =
√
σ/ν, and I1 and K1 are modified Bessel functions of the first and second kind

respectively. Note that γ−1 acts as a length scale, and the width of the boundary layer
attached to the inner cylinder is proportional to γ−1. We have depicted a velocity
field corresponding to γ =

√
50 in Figure 14(b). Finally, under the constraint that∫

Ω

pdx = 0,

the pressure field is identically zero for both the Stokes limit as well as the generalized
Stokes setting. In what follows, we assume rin = 1, rout = 2, and U = 1.

We have computed convergence rates for a variety of divergence-conforming B-
spline discretizations and for γ = 0 and γ =

√
50. To represent the annular domain

in our computations, we employed the polar mapping

F(ξ1, ξ2) =

[
((rout − rin)ξ2 + rin) sin(2πξ1)
((rout − rin)ξ2 + rin) cos(2πξ1)

]
,∀(ξ1, ξ2) ∈ (0, 1)2 (100)
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Figure 13: Cylindrical Couette flow: Problem setup.

and periodic B-splines of maximal continuity in the ξ1-direction (see Section 2 of [25]).
It should be emphasized that we do not use the polar form of the generalized Stokes
equations. Rather, we utilize the polar mapping to define our divergence-conforming
B-splines in physical space and then employ the Cartesian-based variational formu-
lation discussed in this chapter. The results of our computations are summarized
in Tables 9 and 10. Note from the tables that all of our theoretically derived error
estimates are confirmed, though the results corresponding to γ =

√
50 have a more

substantial pre-asymptotic range due to the presence of a boundary layer. Addition-
ally, note that we obtain null pressure fields and axisymmetric velocity fields with
null radial component.

We repeated our computations using the multi-patch NURBS construction illus-
trated in Figure 16. Each of the four patches are built through a sufficient rotation
of the canonical quadratic single-element NURBS patch described in Figure 17, and
we have tabulated the location and weights of the control points of the canonical
quadratic patch in Figure 11. The resulting NURBS parametrization is identical to
the polar parametrization in the radial direction and different in the angular direction.
We define our B-spline discretization scheme on the multi-patch NURBS construc-
tion using the procedure outlined in Section 7 with normal continuity being enforced
strongly between patches and tangential continuity being enforced weakly. Surpris-
ingly, we found we obtained exactly the same velocity and pressure fields using the
multi-patch NURBS construction as we did with the polar mapping. This property is
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Figure 14: Cylindrical Couette flow: (a) Flow velocity arrows for γ = 0, (b) Flow
velocity arrows for γ =

√
50.
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Figure 15: Cylindrical Couette flow: Sequence of polar meshes.
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Table 9: Cylindrical Couette flow convergence rates: γ = 0

Polynomial degree k′ = 1

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 5.42e-1 2.63e-1 1.26e-1 6.12e-2 2.99e-2

order - 1.04 1.06 1.04 1.03
|u− uh|H1(Ω) 4.48e-1 2.32e-1 1.17e-1 5.86e-2 2.93e-2

order - 0.95 0.99 1.00 1.00
‖u− uh‖L2(Ω) 5.00e-2 1.53-2 4.28e-3 1.14e-3 2.94e-4

order - 1.71 1.84 1.91 1.96
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 2

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 9.77e-2 2.42e-2 5.64e-3 1.32e-3 3.14e-4

order - 2.01 2.10 2.10 2.07
|u− uh|H1(Ω) 7.68e-2 2.00e-2 4.92e-3 1.21e-3 2.99e-4

order - 1.94 2.02 2.02 2.02
‖u− uh‖L2(Ω) 4.43e-3 6.03e-4 8.13e-5 1.07e-5 1.38e-6

order - 2.88 2.89 2.93 2.95
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 3

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 2.01e-2 2.67e-3 3.27e-4 4.01e-5 4.98e-6

order - 2.91 3.03 3.03 3.01
|u− uh|H1(Ω) 1.52e-2 2.13e-3 2.84e-4 3.72e-5 4.80e-6

order - 2.84 2.91 2.93 2.95
‖u− uh‖L2(Ω) 6.59e-4 5.69e-5 4.82e-6 3.50e-7 2.33e-8

order - 3.53 3.56 3.78 3.91
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0
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Table 10: Cylindrical Couette flow convergence rates: γ =
√

50

Polynomial degree k′ = 1

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 8.06e-1 4.59e-1 2.30e-1 1.10e-1 5.28e-2

order - 0.81 1.00 1.06 1.06
|u− uh|H1(Ω) 3.75e0 2.44e0 1.35e0 6.93e-1 3.49e-1

order - 0.62 0.85 0.96 0.99
‖u− uh‖L2(Ω) 2.43e-1 9.90e-2 3.16e-2 9.24e-3 2.56e-3

order - 1.30 1.65 1.77 1.85
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 2

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 3.97e-1 1.30e-1 3.28e-2 7.56e-3 1.74e-3

order - 1.61 1.99 2.12 2.12
|u− uh|H1(Ω) 1.96e0 6.99e-1 1.86e-1 4.57e-2 1.12e-2

order - 1.49 1.91 2.03 2.03
‖u− uh‖L2(Ω) 9.86e-2 2.00e-2 2.73e-3 3.66e-4 4.86e-5

order - 2.30 2.87 2.90 2.91
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 3

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 1.69e-1 3.15e-2 4.01e-3 4.80e-4 5.86e-5

order - 2.42 2.97 3.06 3.03
|u− uh|H1(Ω) 8.54e-1 1.67e-1 2.25e-2 2.95e-3 3.86e-4

order - 2.35 2.89 2.93 2.93
‖u− uh‖L2(Ω) 3.31e-2 3.56e-3 3.03e-4 2.55e-5 1.83e-6

order - 3.22 3.55 3.57 3.80
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0
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Figure 17: Cylindrical Couette flow: Patch template control points
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Table 11: Cylindrical Couette flow: Patch template control points.

Control Point x y w
1 0 1 1

2 1 1 1/
√

2
3 1 0 1
4 0 3/2 1

5 3/2 3/2 1/
√

2
6 3/2 0 1
7 0 2 1

8 2 2 1/
√

2
9 2 0 1

purely a consequence of the Piola transform. To shed some light on this observation,
let us consider a parametric velocity field of the form v̂ = {v(ξ2), 0}T . Then, the
image of this velocity field under the Piola transform, denoted as v, has the property
that

divv =
1

J
d̂iv v̂ = 0

where J is the determinant of the Jacobian matrix DF. Moreover, the vector v is
oriented in the direction of parametric lines defined by ξ2 = C where C is an arbitrary
constant. Hence, if ξ1 represents the angular direction and ξ2 represents the radial
direction, this implies that divergence-free lateral velocity fields in parametric space
are mapped to axisymmetric angular velocity fields in physical space regardless of
the specification of F. Unfortunately, this argument applies only to angular velocity
fields and we are not generally able to obtain axisymmetric pressure and radial velocity
fields using the multi-patch NURBS construction.

8.5 Annular Poiseuille Flow

Poiseuille flow is another problem which is often utilized as a “sanity check” for Stokes
and Navier-Stokes discretizations. Here, we consider generalized Stokes Poiseuille flow
of a viscous fluid between two concentric cylinders. The problem setup is illustrated
in Figure 18. No-slip and no-penetration boundary conditions are imposed along
the cylinder surfaces, and periodic boundary conditons are imposed along the axial
direction. An external axial pressure gradient is applied to drive the fluid. In the
absence of Darcy drag forces, the velocity field for annular Poiseuille flow assumes
the form

u =

 0
0

uz(r)


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Figure 18: Annular Poiseuille flow: Problem setup.
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where

uz(r) = − ∆p

4νL

(
r2
in − r2 +

r2
out − r2

in

ln(rout/rin)
ln(r/rin)

)
(r, θ) are polar coordinates with respect to the center of the cylinders, and −∆p/L is
the applied pressure gradient. In the presence of Darcy drag, the velocity field takes
the form

u =

 0
0

uz(r)


where

uz(r) =− ∆p

σL

(
K0(γr) (I0(γrout)− I0(γrin))− I0(γr) (K0(γrout)−K0(γrin))

K0(γrout)I0(γrin)−K0(γrin)I0(γrout)

)
− ∆p

σL
,

γ =
√
σ/ν, and I0 and K0 are modified Bessel functions of the first and second kind

respectively. We have illustrated velocity fields corresponding to γ = 0 and γ =
√

50
in Figure 19. As was the case for cylindrical Couette flow, γ−1 acts as a length scale,
and there is a boundary layer attached to the inner cylinder with width proportional
to γ−1. Finally, under the constraint that∫

Ω

pdx = 0,

the pressure field is identically zero for both the Stokes limit as well as the generalized
Stokes setting. In what follows, we assume rin = 1, rout = 2, L = 1, and ∆p = −1.

We have computed convergence rates for a variety of divergence-conforming B-
spline discretizations and for γ = 0 and γ =

√
50. We have employed both the polar

mapping and the NURBS multi-patch construction described in the previous subsec-
tion to represent the annular domain in our computations with the axial direction
parametrized using a simple linear mapping. Periodic B-splines of maximal continu-
ity were employed in the axial direction. The results of our computations for γ = 0
are summarized in Tables 12 and 13. Note immediately that all of our theoretically
derived error estimates are confirmed. Additionally, note that we obtain null pressure
fields, radial velocity fields, and angular velocity fields for all cases considered. This
being said, observe that we obtain slightly smaller axial velocity errors with the polar
mapping than we do with the NURBS multi-patch construction. This is because we
maintain exact axisymmetry with the polar mapping but not with the NURBS multi-
patch construction. The results of our computations for γ =

√
50 are summarized

in Tables 14 and 15. Again, note that our theoretically derived error estimates are
confirmed, and our results for the polar mapping induce slightly smaller axial velocity
errors than our results for the NURBS multi-patch construction.
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Figure 19: Annular Poiseuille flow: Axial velocity contours along an axial slice for
(a) γ = 0 and (b) γ =

√
50.
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Table 12: Annular Poiseuille flow convergence rates for γ = 0: Polar meshes

Polynomial degree k′ = 1

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 5.30e-1 2.47e-1 1.19e-1 5.80e-2 2.86e-2

order - 1.10 1.05 1.04 1.02
|u− uh|H1(Ω) 4.56e-1 2.28e-1 1.14e-1 5.67e-2 2.83e-2

order - 1.00 1.00 1.01 1.00
‖u− uh‖L2(Ω) 5.49e-2 1.62-2 4.34e-3 1.12e-3 2.84e-4

order - 1.76 1.90 1.95 1.98
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 2

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 5.67e-2 1.23e-2 2.83e-3 6.73e-4 1.64e-4

order - 2.20 2.12 2.07 2.04
|u− uh|H1(Ω) 4.49e-2 1.07e-2 2.61e-3 6.45e-4 1.60e-4

order - 2.07 2.04 2.02 2.01
‖u− uh‖L2(Ω) 2.41e-3 3.49e-4 4.64e-5 5.97e-6 7.58e-7

order - 2.79 2.91 2.96 2.98
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 3

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 1.86e-3 2.14e-4 2.54e-5 3.11e-6 3.87e-7

order - 3.12 3.07 3.03 3.01
|u− uh|H1(Ω) 1.37e-3 1.74e-4 2.26e-5 2.93e-6 3.75e-7

order - 2.98 2.94 2.95 2.97
‖u− uh‖L2(Ω) 5.38e-5 5.05e-6 4.03e-7 2.80e-8 1.83e-9

order - 3.41 3.65 3.85 3.94
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0
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Table 13: Annular Poiseuille flow convergence rates for γ = 0: NURBS

Polynomial degree k′ = 1

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 5.30e-1 2.47e-1 1.19e-1 5.80e-2 2.86e-2

order - 1.10 1.05 1.04 1.02
|u− uh|H1(Kh) 4.57e-1 2.28e-1 1.14e-1 5.67e-2 2.83e-2

order - 1.00 1.00 1.01 1.00
‖u− uh‖L2(Ω) 5.51e-2 1.63-2 4.35e-3 1.12e-3 2.84e-4

order - 1.76 1.91 1.96 1.98
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 2

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 5.69e-2 1.23e-2 2.83e-3 6.75e-4 1.64e-4

order - 2.21 2.12 2.07 2.04
|u− uh|H1(Kh) 4.51e-2 1.07e-2 2.61e-3 6.46e-4 1.61e-4

order - 2.08 2.04 2.01 2.00
‖u− uh‖L2(Ω) 2.52e-3 3.55e-4 4.70e-5 6.04e-6 7.66e-7

order - 2.83 2.92 2.96 2.98
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 3

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 1.91e-3 2.38e-4 2.73e-5 3.33e-6 4.13e-7

order - 3.00 3.12 3.04 3.01
|u− uh|H1(Kh) 1.44e-3 2.03e-4 2.48e-5 3.16e-6 4.03e-7

order - 2.83 3.03 2.97 2.97
‖u− uh‖L2(Ω) 8.00e-5 1.21e-5 6.41e-7 4.00e-8 2.53e-9

order - 2.72 4.24 4.00 3.98
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0
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Table 14: Annular Poiseuille flow convergence rates for γ =
√

50: Polar meshes

Polynomial degree k′ = 1

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 1.73e-1 9.88e-2 4.91e-2 2.35e-2 1.13e-2

order - 0.81 1.01 1.06 1.06
|u− uh|H1(Ω) 8.20e-1 5.29e-1 2.90e-1 1.48e-1 7.46e-2

order - 0.65 0.87 0.97 0.99
‖u− uh‖L2(Ω) 4.88e-2 2.12-2 6.69e-3 1.94e-3 5.37e-4

order - 1.20 1.66 1.79 1.85
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 2

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 8.77e-2 2.59e-2 6.37e-3 1.46e-3 3.37e-4

order - 1.76 2.02 2.13 2.12
|u− uh|H1(Ω) 4.34e-1 1.39e-1 3.63e-2 8.86e-3 2.16e-3

order - 1.64 1.94 2.03 2.04
‖u− uh‖L2(Ω) 2.32e-2 3.98e-3 5.33e-4 7.14e-5 9.46e-6

order - 2.54 2.90 2.90 2.92
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 3

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 2.95e-2 5.72e-3 7.10e-4 8.48e-5 1.04e-5

order - 2.37 3.01 3.07 3.03
|u− uh|H1(Ω) 1.48e-1 3.03e-2 4.02e-3 5.27e-4 6.88e-5

order - 2.29 2.91 2.93 2.94
‖u− uh‖L2(Ω) 5.23e-3 6.40e-4 5.59e-5 4.63e-6 3.27e-7

order - 3.03 3.52 3.59 3.82
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0
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Table 15: Annular Poiseuille flow convergence rates for γ =
√

50: NURBS

Polynomial degree k′ = 1

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 1.73e-1 9.88e-2 4.91e-2 2.35e-2 1.13e-2

order - 0.81 1.01 1.06 1.06
|u− uh|H1(Ω) 8.20e-1 5.29e-1 2.90e-1 1.49e-1 7.46e-2

order - 0.65 0.87 0.96 1.00
‖u− uh‖L2(Ω) 4.89e-2 2.12-2 6.70e-3 1.95e-3 5.37e-4

order - 1.21 1.66 1.78 1.86
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 2

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 8.77e-2 2.59e-2 6.38e-3 1.46e-3 3.37e-4

order - 1.76 2.02 2.13 2.12
|u− uh|H1(Ω) 4.34e-1 1.39e-1 3.63e-2 8.86e-3 2.16e-3

order - 1.64 1.94 2.03 2.04
‖u− uh‖L2(Ω) 2.32e-2 3.98e-3 5.33e-4 7.14e-5 9.46e-6

order - 2.54 2.90 2.90 2.92
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 3

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖V(h) 2.95e-2 5.72e-3 7.10e-4 8.48e-5 1.04e-5

order - 2.37 3.01 3.07 3.03
|u− uh|H1(Ω) 1.48e-1 3.03e-2 4.02e-3 5.27e-4 6.88e-5

order - 2.29 2.91 2.93 2.94
‖u− uh‖L2(Ω) 5.23e-3 6.40e-4 5.59e-5 4.63e-6 3.27e-7

order - 3.03 3.52 3.59 3.82
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
‖uθ − (uθ)h‖L2(Ω) 0 0 0 0 0
‖p− ph‖L2(Ω) 0 0 0 0 0
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Figure 20: Lid-driven Stokes flow in a two-dimensional cavity: Problem setup.

9 Benchmark Problems

In this section, we investigate the effectiveness of our methodology as applied to two
standard Stokes benchmark problems: two-dimensional and three-dimensional lid-
driven cavity flow. In addition, we investigate the effectiveness of our methodology for
a Darcy-dominated generalized Stokes flow problem characterized by sharp boundary
layers. As in the last subsection, we choose Nitsche’s penalty constant as Cpen =
5(k′ + 1) in all of the following numerical tests, and we employ uniform parametric
meshes, linear parametric mappings, and B-spline spaces of maximal continuity.

9.1 Two-Dimensional Lid-Driven Cavity Flow

Two-dimensional lid-driven cavity flow is one of the classical verification tests for
numerical discretizations of incompressible flow. The setup for this flow problem is
elaborated in Figure 20. The reaction coefficient σ and the applied forcing f are set
to be zero. The left, right, and bottom sides of the cavity are fixed no-slip walls while
the top side of the cavity is a wall which slides to the right with velocity magnitude
U . For the computations here, H and U are set to be 1. The pressure and stress fields
associated with this flow experience corner singularities which impede the convergence
of numerical methods and expose unstable velocity/pressure pairs. In fact, the exact
velocity solution does not even lie in H1(Ω). Instead, it lies in the Sobolev space
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W1,q(Ω) where 1 < q < 2. The velocity field is additionally characterized by a
primary vortex near the center of the cavity and an infinite sequence of so-called
Moffatt eddies of decreasing size and intensity in the lower left and right corners of the
cavity [47]. Of primary interest is how well our discretization procedure approximates
the smooth portions of the flow. Of secondary interest is how well our discretization
procedure resolves the corner singularities. We do not, however, employ any special
techniques such as singular finite elements to handle the singularities.

We have computed approximations of two-dimensional lid-driven cavity flow using
divergence-conforming B-spline discretizations of varying mesh size and polynomial
degrees k′ = 1, 2, 3. The computed streamlines for two of these approximations are
presented in Figure 21. The streamlines corresponding to the approximation defined
on the fine mesh (k′ = 1, h = 1/128) are virtually indistinguishable from well-accepted
benchmark solutions [51]. The streamlines corresponding to the approximation de-
fined on the coarse mesh (k′ = 1, h = 1/16) closely resemble the fine mesh streamlines
in the interior of the domain. In the four corners of the domain, the approximation
on the coarse mesh exhibits visible numerical error due to lack of resolution. These
results indicate that our methodology suffers from minimal pollution error [4]. It is
hypothesized that this is due to the local stability and approximation properties of
B-splines. To further highlight how well the approximation on the coarse mesh ap-
proximates the solution in the interior of the domain, we have plotted the value of the
first component of the velocity field along the vertical center line in Figure 22(a) and
the value of the second component along the horizontal center line in Figure 22(b)
for the both the coarse mesh and fine mesh solutions. It should be mentioned that
we have captured the first Moffatt eddy in the two lower corners with both meshes,
and we have observed a second Moffatt eddy for meshes of size h ≤ 1/256.

We finish our discussion of the two-dimensional lid-driven cavity problem by an-
alyzing how well our methodology resolves the corner singularities. To do so, we
compare the results of our methodology with the highly accurate pseudospectral re-
sults given in [10]. These pseudospectral results were obtained using a subtraction of
the leading terms of the asymptotic solution of the Stokes equations in the vicinity
of the corners in order to exactly represent the corner singularities. In Table 16,
we compare the vorticity (ω = curlu) given by our numerical methodology with the
pseudospectral vorticity near the upper right corner of the cavity. We see that the
vorticity associated with our numerical methodology slowly converges to the con-
verged pseudospectral solution. We further compare our computed vorticities with
the vorticity obtained with a highly-refined finite difference solution [32]. We find
that, for k′ = 1, our solutions are more accurate than the finite difference solution for
h ≤ 1/64, and for k′ = 2, our solutions are more accurate than the finite difference
solution for h ≤ 1/32. For k′ = 3, our solutions are more accurate than the finite
difference solution at all resolutions.
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Figure 21: Lid-driven Stokes flow in a two-dimensional cavity: (a) Computed flow
velocity streamlines for k′ = 1 and h = 1/16, (b) Computed flow velocity streamlines
for k′ = 1 and h = 1/128.
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Figure 22: Lid-driven Stokes flow in a two-dimensional cavity: (a) Value of the first
component of the velocity field along the vertical center line for k′ = 1, (b) Value of
the second component of the velocity field along the horizontal center line for k′ = 1.
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Table 16: Lid-driven Stokes flow in a two-dimensional cavity: Convergence of vorticity
at the point (x = (1, 0.95)).

Polynomial degree k′ = 1

Method ω
B-spline, h = 1/16 −0.80995
B-spline, h = 1/32 14.34482
B-spline, h = 1/64 19.04468
B-spline, h = 1/128 23.29179
B-spline, h = 1/256 25.32238

Pseudospectral (Ref. [10]) 27.27901
Finite Difference (Ref. [32]) 18.08

Polynomial degree k′ = 2

Method ω
B-spline, h = 1/16 11.06384
B-spline, h = 1/32 31.81761
B-spline, h = 1/64 32.81972
B-spline, h = 1/128 26.48645
B-spline, h = 1/256 27.34395

Pseudospectral (Ref. [10]) 27.27901
Finite Difference (Ref. [32]) 18.08

Polynomial degree k′ = 3

Method ω
B-spline, h = 1/16 29.86220
B-spline, h = 1/32 25.00897
B-spline, h = 1/64 29.92944
B-spline, h = 1/128 28.75895
B-spline, h = 1/256 27.52637

Pseudospectral (Ref. [10]) 27.27901
Finite Difference (Ref. [32]) 18.08
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Figure 23: Lid-driven Stokes flow in a three-dimensional cavity: Problem setup.

9.2 Three-Dimensional Lid-Driven Cavity Flow

While three-dimensional lid-driven cavity flow is encountered much less often in the
literature than its two-dimensional counterpart, we believe it is still an interesting test
case for numerical discretizations of incompressible flow. In the three-dimensional set-
ting, cavity flow is characterized by the presence of both edge and corner singularities.
The problem setup is illustrated in Figure 23. Again, for the computations here, σ
and f are set to be zero. Every side of the cavity except the top is assumed to be
a stationary no-slip wall, and the top side of the cavity is assumed to be a wall
which slips to the right with velocity magnitude U . The streamlines resulting from a
simulation of three-dimensional lid-driven cavity flow using divergence-conforming B-
splines of degree k′ = 2 on a mesh with 32× 32 elements are illustrated in Figure 24.
Note that the three-dimensional streamlines resemble the two-dimensional stream-
lines along the slice y/H = 1/2. To examine how well our discretization technique
performs on coarse meshes, we have compared the centerline values of our velocity
field along the slice y/H = 1/2 for both a coarse and fine mesh approximation in
Figure 25. From the figure, we see that the coarse and fine mesh centerline velocity
fields are nearly indistinguishable. This indicates that our methodology suffers from
minimal pollution error.
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Figure 24: Lid-driven Stokes flow in a three-dimensional cavity: Computed flow
velocity streamlines for k′ = 2 and h = 1/32 colored by velocity magnitude.

9.3 Darcy-Dominated Flow with Sharp Boundary Layers

As a final numerical example, we consider a reaction-dominated generalized Stokes
problem subject to sharp boundary layers. The problem is posed on the unit square.
Homogeneous no-slip and no-penetration boundary conditions are enforced along the
boundary of the square, and an external forcing of the form

f =

[
sin(πx) cos(πy)
− cos(πx) sin(πy)

]
is applied. The reaction term σ is set to be equal to 1 while the viscosity ν is set to
be equal to 10−6. With these choices, the resulting flow field has a vortical structure
in the interior of the domain and sharp boundary layers along the entire boundary of
the domain.

We have simulated this flow problem using both our discretization technique as
well as the Q2/Q1 Taylor-Hood velocity/pressure pair [36]. The Taylor-Hood veloc-
ity/pressure pair is one of the most popular finite elements for generalized Stokes flow,
but it is known not to be robust in the Darcy limit. Specifically, the accuracy of the
Q2/Q1 Taylor-Hood velocity field reduces to first-order in the Darcy limit [33]. This is
due to a lack of strong coercivity (in the kernel) with respect to the H(div; Ω)-norm.
We have visualized the computed velocity vectors corresponding to divergence-free
B-splines of degree k′ = 1 and the Q2/Q1 Taylor-Hood velocity-pressure pair on a
16× 16 element mesh in Figures 26(a) and (b). These two quiver plots seem to indi-
cate that the two discrete flow fields are nearly identical except in a small region near
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Figure 25: Lid-driven Stokes flow in a three-dimensional cavity: (a) Value of the first
component of the velocity field along the line (x/H, y/H) = (1/2, 1/2) for k′ = 1,
(b) Value of the third component of the velocity field along the line (y/H, z/H) =
(1/2, 1/2) for k′ = 1.

75



the boundary of the domain. However, when we view only the first-component of the
velocity field as in Figures 27 and 28, we see that the divergence-free B-spline solu-
tion is monotone while the Taylor-Hood solution suffers from spurious oscillations.
Finally, we have visualized the divergence of the discrete flow field corresponding to
the Taylor-Hood solution in Figure 29. From this figure, we see that the Taylor-Hood
solution is characterized by strong expansion and compression in the four corners of
the domain. When coupled with a transport solver, this ultimately leads to methods
with unphysical species production [46]. On the other hand, the discrete flow field
corresponding to the B-spline solution is pointwise divergence-free.

10 Conclusions

In this paper, new divergence-conforming B-spline discretizations have been presented
for the generalized Stokes equations. A collection of stability and error estimates have
been derived which are robust with respect to the parameters of generalized Stokes
flow, and these theoretical results have been confirmed and supplemented by numer-
ical simulations of problems with known analytical solutions. These discretizations
have been also applied to the simulation of a number of benchmark problems where
the advantages of the new methodology over classical methods have been highlighted.
In future work, we plan to extend the present developments to the Navier-Stokes
equations and generalize to locally-refined meshes.
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[31] G Guo and I Babuška. The hp version of the finite element method. Part 1: The
basic approximation results. Part 2: General results and applications. Compu-
tational Mechanics, 1:21–41,203–220, 1986.

[32] M M Gupta. A comparison of numerical solutions of convective and divergence
forms of the Navier-Stokes equations for the driven cavity problem. Journal of
Computational Physics, 43:260–267, 1981.

[33] A Hannukainen, M Juntunen, and R Stenberg. Computations with finite element
methods for the Brinkman problem. Computational Geosciences, 15:155–166,
2010.

[34] F H Harlow and J E Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. Physics of Fluids, 8:2182, 1965.

[35] K Höllig. Finite Element Methods with B-splines. Society for Industrial and
Applied Mathematics, 2003.

[36] P Hood and C Taylor. Navier-Stokes equations using mixed interpolation. In J T
Oden, R H Gallagher, O C Zienkiewicz, and C Taylor, editors, Finite Element
Methods in Flow Problems, pages 121–132. University of Alabama in Huntsville
Press, 1974.

[37] T J R Hughes, L P Franca, and M Balestra. A new finite element formulation for
computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition:
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Figure 26: Darcy-dominated flow with boundary layers: Computed velocity fields: (a)
Divergence-free B-splines of degree k′ = 1, (b) Q2/Q1 Taylor-Hood velocity/pressure
pair.
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(a)

(b)

Figure 27: Darcy-dominated flow with boundary layers: First-component of the ve-
locity field: (a) Divergence-free B-splines of degree k′ = 1, (b) Q2/Q1 Taylor-Hood
velocity/pressure pair.
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(a)

(b)

Figure 28: Darcy-dominated flow with boundary layers: Cross-section view of the
first velocity component from the y = 1 line: (a) Divergence-free B-splines of degree
k′ = 1, (b) Q2/Q1 Taylor-Hood velocity/pressure pair.
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Figure 29: Darcy-dominated flow with boundary layers: Divergence of the discrete
flow field corresponding to the Q2/Q1 Taylor-Hood velocity/pressure pair.
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